2022年青岛版九级上《用因式分解法解一元二次方程》版教案.docx
精品_精品资料_资料word 精心总结归纳 - - - - - - - - - - - -名师精编优秀教案用因式分解法解一元二次方程教案一、素养训练目标(一)学问教学点: 1正确懂得因式分解法的实质2娴熟把握运用因式分解法解一元二次方程(二)才能训练点:通过新方法的学习,培育同学分析问题解决问题的才能及探究精神(三)德育渗透点:通过因式分解法的学习使同学树立转化的思想二、教学重点、难点、疑点及解决方法 1教学重点:用因式分解法解一元二次方程式)3教学疑点:懂得 “充要条件 ”、“或”、“且”的含义 三、教学步骤(一)明确目标学习了公式法,便可以解全部的一元二次方程对于有些一元二次方程,例如( x2)( x3) 0,假如转化为一般形式,利用公式法就比较麻烦,假如转化为 x 2 0 或 x30,解起来就变得简洁多了即可得x1 2, x2-3 这种解一元二次方程的方法就是本节课要讨论的一元二次方程的方法 因式分解法(二)整体感知所谓因式分解,是将一个多项式分解成几个一次因式积的形式假如一元二次方程的左边是一个易于分解成两个一次因式积的二次三项式,而右边为零用因式分解法更为简洁例如: x2 5x60,因式分解后 (x 2)( x 3)0,得 x20 或 x 3 0,这样就将原先的一元二次方程转化为一元一次方程,方程便易于求解 可以说二次三项式的因式分解是因式分解法解一元二次方程的关键 “假如两个因式的积等于零,那么两个因式至少有一个等于零”是因式分解法解方程的理论依据方程的左边易于分解,而方程的右边等于零是因式分解法解 方程的条件满意这样条件的一元二次方程用因式分解法最简洁(三)重点、难点的学习与目标完成过程1复习提问可编辑资料 - - - 欢迎下载精品_精品资料_学习资料 名师精选 - - - - - - - - - -第 1 页,共 4 页 - - - - - - - - - -可编辑资料 - - - 欢迎下载精品_精品资料_资料word 精心总结归纳 - - - - - - - - - - - -名师精编优秀教案零,那么这两个因式至少有一个等于零反之,假如两个因式有一个等于零,它们的积也就等于零“或”有以下三层含义A0 且 B0 A0且 B0 A0 且 B0 2例 1解方程 x22x0解:原方程可变形x( x 2) 0第一步x0 或 x20其次步x1=0 ,x2=-2 老师提问、板书,同学回答分析步骤(一)第一步变形的方法是“因式分解 ”,其次步变形的理论依据是 “假如两个因式的积等于零,那么至少有一个因式等于零”分析步骤(二)对于一元二次方程,一边是零,而另一边易于分解成两个一次式时,可以得到两个一 元一次方程,这两个一元一次方程的解就是原一元二次方程的解用此种方法解 一元二次方程叫做因式分解法由第一步到其次步实现了由二次向一次的“转化”,达到了 “降次”的目的,解高次方程常用转化的思想方法例 2用因式分解法解方程x22x 15 0解:原方程可变形为( x5)( x-3) 0 得, x5 0 或 x-3 0x1-5,x2 3 老师板演,同学回答,总结因式分解的步骤 :(一)方程化为一般形式 .(二)方程左边因式分解 .(三)至少一个一次因式等于零得到两个一元一次方程 .(四)两个一元一次方程的解就是原方程的解练习: P22 中 1、2第一题同学口答,其次题同学笔答,板演体会步骤及每一步的依据例 3 解方程 3(x-2 )-x( x-2 ) 0解:原方程可变形为( x-2)( 3-x ) 0 可编辑资料 - - - 欢迎下载精品_精品资料_学习资料 名师精选 - - - - - - - - - -第 2 页,共 4 页 - - - - - - - - - -可编辑资料 - - - 欢迎下载精品_精品资料_资料word 精心总结归纳 - - - - - - - - - - - -名师精编优秀教案x-20 或 3-x 0x12 ,x2 3老师板演,同学回答此方程不需去括号将方程变成一般形式对于总结的步骤要详细情形详细分析(2)( 3x2)2=4 (x-3 )2.解:原式可变形为( 3x2)2-4 ( x-3) 20 ( 3x2 ) 2( x-3 )(3x2 ) -2(x-3) 0 即:( 5x-4)( x8 )=05x-4 0 或 x 8 0同学练习、板演、评判老师引导,强化练习:解以下关于x 的方程6( 4x 2)2x(2x 1)同学练习、板演老师强化,引导,训练其运算的速度练习 P24 练习(四)总结、扩展1因式分解法的条件是方程左边易于分解,而右边等于零,关键是娴熟把握因式分解的学问,理论照旧是“假如两个因式的积等于零,那么至少有一个因式等于零 ”四、布置作业 教材 P31 中 12因式分解法解一元二次方程的步骤是:(1)化方程为一般形式.可编辑资料 - - - 欢迎下载精品_精品资料_学习资料 名师精选 - - - - - - - - - -第 3 页,共 4 页 - - - - - - - - - -可编辑资料 - - - 欢迎下载精品_精品资料_资料word 精心总结归纳 - - - - - - - - - - - -名师精编优秀教案(2)将方程左边因式分解.(3)至少有一个因式为零,得到两个一元二次方程.(4)两个一元一次方程的解就是原方程的解 但要详细情形详细分析3因式分解的方法 ,突出了转化的思想方法 ,鲜明的显示了 “二次”转化为 “一次”的过程五、板书设计12 2用因式分解法解一元二次方程(一)例例12二、因式分解法的步骤(1)练习:(2)(3)(4)但要详细情形详细分析可编辑资料 - - - 欢迎下载精品_精品资料_学习资料 名师精选 - - - - - - - - - -第 4 页,共 4 页 - - - - - - - - - -可编辑资料 - - - 欢迎下载