2022年高中三角函数,反三角函数公式大全.docx
精品_精品资料_资料word 精心总结归纳 - - - - - - - - - - - -三角函数公式两角和公式sinA+B = sinAcosB+cosAsinB sinA-B = sinAcosB-cosAsinB cosA+B = cosAcosB-sinAsinB cosA-B = cosAcosB+sinAsinB可编辑资料 - - - 欢迎下载精品_精品资料_tanA+B =tanAtanBtanA-B =tanAtanB可编辑资料 - - - 欢迎下载精品_精品资料_1- tanAtanB1tanAtanB可编辑资料 - - - 欢迎下载精品_精品资料_cotA+B =cotAcotB-1 cotA-B =cotAcotB1可编辑资料 - - - 欢迎下载精品_精品资料_倍角公式cotBcotAcotBcotA可编辑资料 - - - 欢迎下载精品_精品资料_tan2A =12tanA tan 2 ASin2A=2SinA.CosA可编辑资料 - - - 欢迎下载精品_精品资料_Cos2A = Cos2A-Sin 2A=2Cos2A-1=1-2sin2A三倍角公式sin3A = 3sinA-4sinA 3cos3A = 4cosA3-3cosAtan3a = tana·tan+a· tan-a33半角公式可编辑资料 - - - 欢迎下载精品_精品资料_sinA =1cos A cos A =1cosA tan A =1cos Acot A =1 cos A可编辑资料 - - - 欢迎下载精品_精品资料_2tan A = 12cos A =22sin A2 1cosA21cosA可编辑资料 - - - 欢迎下载精品_精品资料_2和差化积sin A1cos A可编辑资料 - - - 欢迎下载精品_精品资料_sina+sinb=2sin ab cos ab22sina-sinb=2cosab-2sin2sin ab 2可编辑资料 - - - 欢迎下载精品_精品资料_2coscosa+cosb =a 2b cos ab 2cosa-cosb =ab 2sin ab 2可编辑资料 - - - 欢迎下载精品_精品资料_tanA+tanB=sinA+B/cosAcosB tanA-tanB=sinA-B/cosAcosB ctgA+ctgB=sinA+B/sinAsinB -ctgA+ctgB=sinA+B/sinAsinB可编辑资料 - - - 欢迎下载精品_精品资料_积化和差sinasinb = - 12cosa+b-cosa-bcosacosb =1 cosa+b+cosa-b2可编辑资料 - - - 欢迎下载精品_精品资料_sinacosb =诱导公式1 sina+b+sina-bcosasinb =21 sina+b-sina-b2可编辑资料 - - - 欢迎下载精品_精品资料_sin-a = -sinacos-a = cosasin-a = cosacos-a = sina22可编辑资料 - - - 欢迎下载精品_精品资料_sin+a = cosacos+a = -sinasin22-a = sinacos -a = -cosa可编辑资料 - - - 欢迎下载精品_精品资料_sin +a-=sinacos +a-c=osatgA=tanA = sin acos a可编辑资料 - - - 欢迎下载精品_精品资料_学习资料 名师精选 - - - - - - - - - -第 1 页,共 5 页 - - - - - - - - - -可编辑资料 - - - 欢迎下载精品_精品资料_资料word 精心总结归纳 - - - - - - - - - - - -可编辑资料 - - - 欢迎下载精品_精品资料_万能公式2tan a1tana 22 tan a可编辑资料 - - - 欢迎下载精品_精品资料_sina=12tan a 22cosa=1tan2a 22tana=1tan2a 22可编辑资料 - - - 欢迎下载精品_精品资料_其它公式a.sina+b.cosa= a 2b 2 × sina+c 其中tanc= b a可编辑资料 - - - 欢迎下载精品_精品资料_a.sina-b.cosa =a 2b 2 ×cosa-c 其中tanc= a b可编辑资料 - - - 欢迎下载精品_精品资料_1+sina =sin a2+cos a 22可编辑资料 - - - 欢迎下载精品_精品资料_1-sina = sin a2-cos a 22可编辑资料 - - - 欢迎下载精品_精品资料_其他非重点三角函数可编辑资料 - - - 欢迎下载精品_精品资料_csca =1seca =sin a1cos a可编辑资料 - - - 欢迎下载精品_精品资料_公式一:设 为任意角,终边相同的角的同一三角函数的值相等: sin(2k)= sin c(os2k)= cos tan(2k)= tan c(ot2k)= cot 公式二:设 为任意角, +的三角函数值与的三角函数值之间的关系:sin()= -sin co(s)= -cos tan()= tan c(ot ) = cot 公式三:任意角 与 -的三角函数值之间的关系: sin(-) = -sin c(os-)= cos tan(-) = -tan c(ot -)= -cot 公式四:利用公式二和公式三可以得到-与 的三角函数值之间的关系:sin(-)= sin c(os-)= -cos tan(-)= -tan c(ot -)= -cot 公式五:利用公式 -和公式三可以得到2-与 的三角函数值之间的关系: sin(2-)= -sin co(s2-) = cos tan(2-)= -tan co(t 2-) = -cot 公式六:±及 3±与 的三角函数值之间的关系:22可编辑资料 - - - 欢迎下载精品_精品资料_sin(+)= cos c(os2+)= -sin 2可编辑资料 - - - 欢迎下载精品_精品资料_可编辑资料 - - - 欢迎下载精品_精品资料_学习资料 名师精选 - - - - - - - - - -第 2 页,共 5 页 - - - - - - - - - -可编辑资料 - - - 欢迎下载精品_精品资料_资料word 精心总结归纳 - - - - - - - - - - - -可编辑资料 - - - 欢迎下载精品_精品资料_tan(+)= -cot c(ot2+) = -tan 2可编辑资料 - - - 欢迎下载精品_精品资料_sin(-)= cos c(os-) = sin t(an-)= cot c(ot-) = tan 2222可编辑资料 - - - 欢迎下载精品_精品资料_sin( 3+)= -cos co(s2tan( 3+)= -cot c(ot2sin( 3-) = -cos co(s23+)= sin 23+)= -tan 23-)= -sin 2可编辑资料 - - - 欢迎下载精品_精品资料_tan( 3-) = cot c(ot 3-)= tan 22以上 k Z这个物理常用公式我费了半天的劲才输进来,期望对大家有用可编辑资料 - - - 欢迎下载精品_精品资料_A.sin t+ + B.sin t+A 2 B=22 AB cos ×可编辑资料 - - - 欢迎下载精品_精品资料_可编辑资料 - - - 欢迎下载精品_精品资料_sintarcsinAsinBsin可编辑资料 - - - 欢迎下载精品_精品资料_A2B 22ABcos可编辑资料 - - - 欢迎下载精品_精品资料_可编辑资料 - - - 欢迎下载精品_精品资料_正切函数tan xsin x.余切函数cot xcos x.可编辑资料 - - - 欢迎下载精品_精品资料_正割函数sec xcos x 1cos x.余割函数csc xsin x 1sin x可编辑资料 - - - 欢迎下载精品_精品资料_三角函数奇偶、周期性周期sin x , tan x , cot x 奇函数. cos x 偶函数.可编辑资料 - - - 欢迎下载精品_精品资料_sin x , cosx 周期 2. sint2. tan x , cot x 周期可编辑资料 - - - 欢迎下载精品_精品资料_常用三角函数公式:可编辑资料 - - - 欢迎下载精品_精品资料_2cosx2sinx21 cosx2sinxcos 2 x 2sinxcos xsin 2 x可编辑资料 - - - 欢迎下载精品_精品资料_可编辑资料 - - - 欢迎下载精品_精品资料_1cos 2 x2sin 2x 1cos 2 x2cos 2 x可编辑资料 - - - 欢迎下载精品_精品资料_可编辑资料 - - - 欢迎下载精品_精品资料_1tan 2 x1cos2 xsec2x 1cot 2 x1sin2 xcsc2 x可编辑资料 - - - 欢迎下载精品_精品资料_sinx sin y1 cos xycos xy 2cos x cos y1 cos xycos xy 2可编辑资料 - - - 欢迎下载精品_精品资料_sinx cos y1 sin xysin xy 2可编辑资料 - - - 欢迎下载精品_精品资料_可编辑资料 - - - 欢迎下载精品_精品资料_反三角函数:arcsin xarccos xarctan x2arccot x2可编辑资料 - - - 欢迎下载精品_精品资料_可编辑资料 - - - 欢迎下载精品_精品资料_arcsin x :定义域 1,1 ,值域 , . arccosx :定义域 1,1 ,值域 0, . 22可编辑资料 - - - 欢迎下载精品_精品资料_可编辑资料 - - - 欢迎下载精品_精品资料_学习资料 名师精选 - - - - - - - - - -第 3 页,共 5 页 - - - - - - - - - -可编辑资料 - - - 欢迎下载精品_精品资料_资料word 精心总结归纳 - - - - - - - - - - - -可编辑资料 - - - 欢迎下载精品_精品资料_arctan x :定义域 , ,值域 , . arc cot x :定义域 , ,值域 0, 22可编辑资料 - - - 欢迎下载精品_精品资料_式中 n 为任意整数 .arc sin x =arc cos x =arc tan x =arc cot x =可编辑资料 - - - 欢迎下载精品_精品资料_学习资料 名师精选 - - - - - - - - - -第 4 页,共 5 页 - - - - - - - - - -可编辑资料 - - - 欢迎下载精品_精品资料_8f DOt可编辑资料 - - - 欢迎下载