年产15000吨柠檬酸钠工厂设计_本科毕业设计(38页).doc
-
资源ID:37850507
资源大小:449.50KB
全文页数:38页
- 资源格式: DOC
下载积分:15金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
年产15000吨柠檬酸钠工厂设计_本科毕业设计(38页).doc
-年产15000吨柠檬酸钠工厂设计_本科毕业设计-第 38 页年产15000吨柠檬酸钠工厂设计第一章 综述1.1柠檬酸钠简介柠檬酸钠,别名为枸橼酸钠,学名为2-羟基丙三羧酸三钠,分子式:C6H5O7Na3·2H2O,相对分子质量:29410,含有两个分子的结晶水,白色立方系结晶或者粉末,无嗅清凉味咸;易溶于水,不溶于乙醇,常温下状态稳定,在潮湿空气中微有潮解性,属无毒品,加热至150失去结晶水。水溶液为弱碱性。联合国粮农与世界卫组织对其每日允许摄入量不作任何限制,被认为无毒品。目前,柠檬酸钠的根据原料和工艺的不同大致有如下几种生产工艺:柠檬酸-纯碱法、钙盐一步法(复分解法)、中和法、柠檬酸-小苏打法、发酵法。工业上生产柠檬酸钠的传统工艺过程是:先用硫酸对柠檬酸钙进行酸解,通过双管法判断酸解终点,再进行过滤、脱色及离子交换,得到柠檬酸。将柠檬酸与碳酸钠进行中和反应,即得到柠檬酸钠。该生产工艺生产成本高、周期长、副产品硫酸钙及二氧化碳不能有效利用,造成环境污染。柠檬酸钠是目前工业上最重要的一种柠檬酸盐,用途极其广泛,可用于食品、医药、环保、电镀和酿造等行业,安全无毒、金属离子络合能力强、易降解等。根据相关数据,目前国内有十几家企业生产,年产量约1O万t;市场需求量逐年增加,1999年出口254万t;2 0 0 0年出口32 8万t,同比出口量年增长225%,2001年出口量达37万t1。1874年首次从柠檬汁中提出柠檬酸并结晶成固体;1913年首次实现利用黑曲霉发酵生成柠檬酸。由于社会的环保意识的逐渐增强,有学者利用发酵原理进行柠檬酸钠的生产,该工艺无污染,成本低,生产周期视发酵时间而定。其基本原理为:由淀粉水解液或糖质原料在适宜的条件下由酶的作用得到混合发酵清液,将发酵清液经过离子树脂交换,再用氢氧化钠溶液洗脱吸附的柠檬酸,所得清液经浓缩结晶而获得柠檬酸钠。随着生物技术的进步,柠檬酸钠工业有了突飞猛进的发展,全世界柠檬酸钠产量已达3×105吨。在柠檬酸发酵技术领域,由于高产菌株的应用和新技术的不断开拓,柠檬酸发酵和提取收率都有明显提高,每生产1t柠檬酸分别消耗2.52.8t糖蜜,2.22.3t薯干粉或1.21.3t蔗糖。人们正在大力开发固定化细胞循环生物反应器发酵技术。1.2 柠檬酸钠的性质及用途1.2.1柠檬酸钠的性质柠檬酸钠是目前最重要的柠檬酸盐,它不仅大量用于糖果、饮料、化妆品、抗凝血剂等的制造生产,目前柠檬酸钠的生产工艺主要由淀粉等糖类物质经发酵生成柠檬酸,再跟碱类物质中和而产生,具有多种独特的优良性能,且无污染2。(1)安全无毒的性能。由于制备柠檬酸钠的原料基本来源于粮食,因而绝对安全可靠,对人类健康不会产生危害。联合国粮农与世界卫生组织对其每日摄人量不作任何限制,可认为该品属于无毒品。(2)金属离子络合能力强。柠檬酸钠对Ca2+、Mg2+等金属离子具有良好的络合能力,对其他金属离子,如Fe2+等离子也有很好的络合能力。(3)良好的缓冲性能。柠檬酸钠是一种弱酸强碱盐,与柠檬酸配伍可组成较强的pH缓冲剂,因此在某些不适宜pH大范围变化的场合有其重要用处。另外,柠檬酸钠还具有优良的稳定性能。(4)溶解性大,并且其溶解性随水温升高而增加。(5)生物降解性。柠檬酸钠经自然界大量的水稀释后,部分变成柠檬酸,两者共存于同一体系中。柠檬酸在水中经氧、热、光、细菌以及微生物的作用,很容易发生生物降解。1.2.2柠檬酸钠的用途檬酸钠具有上述多种优良的性能,使得其具有十分广泛的用途。在食品方面柠檬酸钠用作食品添加剂,需求量最大,主要用作调味剂、缓冲剂、乳化剂、膨胀剂、稳定剂(使用量0.2-0.3)和防腐剂等;柠檬酸钠常与柠檬酸配伍,用作各种果酱、果冻、果汁、饮料、冷饮、奶制品、糕点、乳酪和熟火腿等的营养增补剂,胶凝剂及风味剂,用量约2g/Kg。在用于食品加工时,应正确调节其pH值。在医药方面,柠檬酸钠的用途也很广泛。利用柠檬酸根与钙离子能形成可溶性络合物的特性,可用作抗凝血剂和输血剂,保存和加工血制品。柠檬酸钠作为防腐剂,用于保存糖浆等药物。柠檬酸钠注射时和甲盐一样,用于矫正血液、体液及尿液的酸度,作为化痰剂、利尿剂化痰剂等3。柠檬酸钠作为防腐剂,用于保存糖浆等药物。柠檬酸钠与别的试剂配伍,可用于提取、纯化动物肝脏核糖核酸4。柠檬酸钠的水溶性好,分散污垢能力和抗再沉积能力强,软化水质效果好等特点,被选作磷酸三钠替代品,生产无磷洗衣粉。尤其适用于制造液体洗涤助剂。随着环保工业的发展,世界范围内无磷洗衣剂的大量使用,无疑促进柠檬酸钠的生产和发展。柠檬酸钠在水中经氧、热、光、细菌和微生物作用很容易发生生物降解 ,其分解途径一般是经乌头酸 、衣康酸、柠康酸酐,转化为CO和水,因此含柠檬酸钠的洗涤废水可直接排放 ,而不会在环境中积累 ,造成污染。柠檬酸钠-柠檬酸缓冲液用于烟气脱硫5。我国煤炭资源丰富,是构成能源的主要部分,然而一直缺乏有效的烟气脱硫工艺,导致大气SO2污染严重。目前,我国SO2年排放量已近4000万吨,研究有效的脱硫工艺,实为当务之急。柠檬酸-柠檬酸钠缓冲溶液由于其蒸气压低、无毒、化学性质稳定、对SO2吸收率高等原因,是极具开发价值的脱硫吸收剂。含柠檬酸钠的液体洗涤剂还具有其他的优良性能,如有的含柠檬酸钠专用清洗剂对某些金属器具无腐蚀性,因而可专门用于清洗贵重的精密仪器等;有的含柠檬酸钠专用洗涤剂清洗器具后,金属表面光亮如新,而且,清洗后的废液经过处理能再生重复利用,降低了洗涤成本6。此外,柠檬酸钠还应用于电镀、摄影药品、锅炉水处理等行业,柠檬酸钠可作为缓凝剂加入混凝土中,以提高水泥制品的抗拉、抗压及抗冻性能,在陶瓷工业上,柠檬酸钠作为助磨添加剂7。今年又开发出酿造、照相行业等新用途,进一步拓展了柠檬酸钠的应用领域。柠檬酸盐市场令人乐观,尤其是洗涤助剂等新用途的开发,使得柠檬酸钠产品市场年需求量以8%-12%速度递增。1.3 柠檬酸钠的生产方法由于以柠檬酸为原料生产柠檬酸钠的工艺技术仍属传统的间歇反应工艺;结合我国年产40万吨柠檬酸的大国地位,探讨出从柠檬酸发酵清液出发,采用电子计算机程序控制,将原料处理、提纯等加工工序连续化的新型生产工艺,以进一步提高柠檬酸钠的产率,降低生产成本,提高产品的市场竞争力,扩大出口创汇,是柠檬酸钠生产企业今后研究的方向。依据生产原料和工艺的不同,柠檬酸钠的生产方法主要有以下几种8:(1)柠檬酸-纯碱法。该工艺是将纯碱在加热搅拌下溶于水中,加入柠檬酸继续升温至85-90,pH控制在6.8左右。中和反应完成后加入适量的活性炭,煮沸脱色后过滤,浓缩所得滤液即可得到柠檬酸钠,是目前各工业企业普遍采用的生产方法。该生产工艺显著降低生产成本,但是反应过程中的pH值要随时用酸或碱调节,防止二氧化碳大量的产生,应该按照工艺要求严格控制。(2)钙盐一步法。在G-2活化剂存在下,将碳酸钠溶液加热至80,再加入柠檬酸钙,反应30分钟,利用柠檬酸钙与纯碱混合发生复分解反应而获取柠檬酸钠,最佳工艺条下柠檬酸钙的转化率在99.7,柠檬酸钠的产率达到98.6。该生产工艺简化了生产流程,降低了生产成本,消除大量硫酸钙对环境的污染;但是反应温度应控制好,必须使用G-2活化剂。(3)中和法。该生产工艺是最早研究开发的生产工艺。将柠檬酸溶于水,加入氢氧化钠溶液中,发生中和反应并产生大量的热,经过滤浓缩结晶干燥等工序处理得到成品。本生产方法工艺简单,产品纯度好;但生产成品高,限于用于烧碱资源来源丰富的地区。(4)柠檬酸-小苏打法。本法是采用高品质的小苏打溶于水后与柠檬酸中和,经过荣所结晶等工序处理得柠檬酸钠。其特点是反应条件温和,产品质量好,二氧化碳的产生缓和,中间过程容易控制,工艺操作性好。(5)发酵法。由淀粉或糖质原料在适宜的条件下由酶的发酵作用得到混合发酵清液,将发酵清液经过离子树脂交换,再用氢氧化钠溶液洗脱吸附的柠檬酸,所得清液经浓缩结晶而获得柠檬酸钠。此工艺无污染,成本低,生产周期视发酵时间而定。1.4 本设计所采用的生产工艺本设计介绍以黑曲霉深层发酵生产工艺为基础、薯干为原料生产柠檬酸钠的生产工艺,并结合目前较为先进的提纯技术和生产设备,获得高质量、高产量的柠檬酸钠产品。基本工艺为:由薯干制成的淀粉水解液在适宜的温度、pH等条件下由黑曲霉的深层发酵作用得到混合发酵清液,发酵清液主要是柠檬酸,将发酵清液经过滤、离子树脂交换后,再用氢氧化钠溶液中和,所得清液经真空浓缩、结晶而获得柠檬酸钠。1.4.1 发酵机理淀粉水解液或糖质原料生成柠檬酸的生化过程中,由糖变成丙酮酸的过程与酒精发酵相同,亦即通过E-M途径(双磷酸己糖途径)进行酵解,然后丙酮酸进一步氧化脱羧生成乙酰辅酶A,乙酰辅酶A和丙酮酸羧化所生成的草酰乙酸缩合成为柠檬酸并进入三羧酸循环途径。 柠檬酸是代谢过程中的中间产物。在发酵过程中,当微生物的乌头酸水合酶和异柠檬酸脱氢酶活性很低,而柠檬酸合成酶活性很高时,才有利于柠檬酸的大量积累。1.4.2 生产工艺 本设计以薯干为原料,将薯干制成淀粉水解液,在温度2830、pH 24及一定的通风量等条件下,由黑曲霉D353在密闭发酵罐中深层发酵60小时,发酵液经过滤滤除大颗粒未发酵的原料和菌丝体,再经精滤去除较大径粒的杂质及沉淀物,活性炭脱色后直接将发酵清液进入弱碱性阴离子交换柱吸附和交换柠檬酸,再用柠檬酸柠檬酸铵缓冲溶液洗脱易碳化合物9,并用稀盐酸解析10,11,得到的柠檬酸稀溶液分别用732型阳离子交换树脂和315型阴离子交换树脂去除带正、负电荷的杂质离子,得到高纯度的柠檬酸溶液9,用氢氧化钠溶液中和柠檬酸,所得清液经真空浓缩、提纯后获得高质量柠檬酸钠12。生产工艺流程如下图1.1所示:原料(薯干)预处理 (淀粉水解液) 发酵种子 空气 配料 种子培养基 空气进化系统 种子培养基 种子罐 分过滤器 发酵培养基 深层发酵罐 分过滤器 发酵液 过滤、精滤活性炭 脱色 弱阴离子交换树脂(吸附、交换)柠檬酸柠檬酸铵缓冲溶液 洗脱易碳化合物 稀盐酸 洗脱 732型阳离子交换树脂、315型阴离子交换树脂氢氧化钠溶液 中和真空浓缩、结晶成品柠檬酸钠图1.1 柠檬酸钠生产工艺图因此柠檬酸钠的生产过程分为柠檬酸的生产发酵和提取两部分。柠檬酸发酵有固态发酵、液态浅盘发酵和深层发酵3种方法13。本设计采用黑曲霉深层发酵,深层发酵生产柠檬酸的主体设备是发酵罐。微生物在这个密闭容器内繁殖与发酵,现多采用通用发酵罐。它的主要部件包括罐体、搅拌器、冷却装置、空气分布装置、消泡器,轴封及其他附属装置。发酵罐径高比例一般是1:2.5,应能承受一定的压力,并有良好的密封性。除通用式发酵罐外,还可采用带升式发酵罐、塔式发酵罐和喷射自吸式发酵罐等。本设计采用喷环式好氧发酵罐充分利用0.0050015MPa压缩空气,可以解决发酵通气装置中气泡直径随通气增加而增大的难题利用混合搅拌乳化装置使深层发酵液中的氧得以有效利用。虽然黑曲霉菌对原料要求不高发酵前原料不需经过离子交换因而简化了发酵前的处理设备;但是由于大量纤维等杂质存在,造成设备庞大,提取后处理过程中固体物料多,操作条件不好,物料损失大。因此就有个原料精细化的问题,即应先将薯干(发酵原料)制成淀粉后,作为柠檬酸的发酵原料,一方面可减少固体物料处理量,使之易于操作,另一方面还可综合利用这些作物中的其他组分。本设计在温度为2830、pH 为24及一定的通风条件下生产柠檬酸。柠檬酸的发酵因菌种、工艺、原料而异,但在发酵过程中还需要掌握一定的温度、通风量及pH值等条件。黑曲霉适合在2830时产酸。温度过高会导致菌体大量繁殖,糖被大量消耗以致产酸降低,同时还生成较多的草酸和葡萄糖酸;温度过低则发酵时间延长。黑曲霉发酵产生柠檬酸要求低pH,最适pH为24,这不仅有利于生成柠檬酸,减少草酸等杂酸的形成,同时可避免杂菌的污染。柠檬酸发酵要求较强的通风条件,有利于在发酵液中维持一定的溶解氧量。通风和搅拌是增加培养基内溶解氧的主要方法。随着菌体生成,发酵液中的溶解氧会逐渐降低,从而抑制了柠檬酸的合成。采用增加空气流速及搅拌速度的方法,使培养液中溶解氧达到60饱和度对产酸有利。在发酵过程中,发酵条件控制都是非常重要的,柠檬酸生成和菌体形态有密切关系,若发酵后期形成正常的菌球体,有利于降低发酵液粘度而增加溶解氧,因而产酸就高;若出现异状菌丝体,而且菌体大量繁殖,造成溶解氧降低,使产酸迅速下降。发酵液中金属离子的含量对柠檬酸的合成有非常重要的作用,过量的金属离子引起产酸率的降低, 由于铁离子能刺激乌头酸水合酶的活性,从而影响柠檬酸的积累。因此,在发酵生产过程中应该按照生产的要求,严格控制好生产条件,防止有毒、有害、副产物等的产生,促进目标产物柠檬酸的生成。本设计采用离子交换树脂法提纯柠檬酸,生物工业中最常用的交换剂为离子交换树脂,广泛用于提取氨基酸、有机酸、抗生素等小分子生物制品。在提取过程中,生物制品从发酵液中吸附在离子交换树脂上,然后在适宜的条件下用洗脱剂将吸附物从树脂上洗脱下来,达到分离、浓缩、提纯的目的。柠檬酸发酵所用原料为薯干经原料预处理的淀粉水解液,因含有大量金属离子,必须应用离子交换树脂脱铁、钙后方能使用。然而微量的锌、铜离子又可以促进产酸。发酵产生柠檬酸后其发酵液中尚含有各种杂质,必须采取一系列物理及化学方法进行提纯处理,目前国内外工业生产中采用的提纯工艺大都是钙盐沉淀法。发酵液经菌丝过滤后,通过活性炭吸附14后再经过离子交换树脂吸附和交换柠檬酸,再用氢氧化钠溶液中和,所得清液在真空下浓缩、结晶。第二章 工艺计算2.1物料衡算本设计以薯干为原料,将薯干制成淀粉水解液,在温度2830、pH 24及一定的通风量等条件下,由黑曲霉D353在密闭发酵罐中深层发酵60小时,发酵液经过滤滤除大颗粒未发酵的原料和菌丝体,再经精滤去除较大径粒的杂质及沉淀物,活性炭脱色后直接将发酵清液进入弱碱阴离子交换柱吸附,并用稀盐酸解析,得到的柠檬酸稀溶液分别用阴、阳离子交换树脂离子交换树脂去除带正、负电荷的杂质离子,用氢氧化钠溶液中和柠檬酸,所得清液经真空浓缩、提纯后获得高质量柠檬酸钠。依据该生产工艺,本设计中柠檬酸钠的生产流程如下:原料预处理(糖化)发酵过滤离子交换树脂中和浓缩、结晶成品。各生产工序生产条件及技术经济指标如下: 原料:薯干年产量:100000t/a柠檬酸钠发酵周期:60小时年生产天数:300天薯干粉含淀粉:72%淀粉糖化转化率:95%产酸率:14%板框过滤收率:97%真空抽滤收率:95%结晶收率:90%离子交换树脂吸附率:90%(86%99%)柠檬酸钠转化率:98%工艺技术指标及基础数据(1)生产规模:100000t/a柠檬酸折钠(2)生产方法:外加耐高温-淀粉酶液化,深层液体发酵,(3)生产天数:每年300天;(4)食用99.5%无水柠檬酸日产量:91625.44÷300=305.42t,取整数为306t;(5)食用99.5%无水柠檬酸年产量:306×300=91800t;(6)产品质量:国际食用柠檬酸99.5%(质量分数),实际产率98%,副产品约占2%;(7)薯干粉成分:含淀粉量 70%,水分13%;(8)-淀粉酶用量:8U/g原料;(9)操作参数:淀粉糖转化率98.5%,糖酸转化率95%,提取阶段分离收率95%,精制阶段收率98%,倒罐率1%则其得率为;产酸率(即糖发酵液转化率)13%;发酵周期75h,发酵温度(351),发酵通风量10V/(V发酵液h)。2.1.1总物料衡算以天作为计算基准:柠檬酸钠每天产量:100000/300=333.33(吨)(取335吨)柠檬酸每天提纯量:335×192/(90%×98%×294.1)=247.96(吨)柠檬酸每天产量:247.96/(90%×97%×95%)=298.98(吨)发酵液每天消耗量:298.98/14%=2135.58(吨)淀粉经调浆后进行糖化,将糖化后的糖液稀释至20%(糖含量),则薯干每天消耗量为:2135.58×20%×162/(95%×72%×180)=562(吨)每克干物质添加酶活力为2000U/g的酶制剂,每克干物质添加量8U,则-淀粉酶每天耗量:562×8/2000=2.248(吨)糖化酶活力为2000U/g,使用量为150g/g原料,糖化酶每天消耗量:562×150/2000=42.15(吨)每吨产品薯干耗量:562/50=11.24(吨/吨产品)年产15000吨柠檬酸钠物料衡算表(表2.1):表2.1 年产15000吨柠檬酸钠物料衡算表物料名称每日耗量(吨)每月(25天)耗量(吨)每年耗量(吨)薯干56214050168600每吨产品薯干耗量11.24(吨)发酵液2135.5853389.5640674柠檬酸钠335(日产量)8375(月产量)100500(年产量)续表2.1柠檬酸29898(日产量)7398.75(月产量)88785(年产量)-淀粉酶2.24856.2674.4糖化酶42.151053.75126452.1.2发酵车间物料衡算发酵车间物料流向如图所示(以天作为计算基准):发酵 发酵液 发酵醪液 接种每天发酵液消耗量318.7吨,接种量按10%接种,每天接种量为:318.710%=31.87(吨)假设发酵罐清洗水用量为发酵液量的5%,发酵醪液量为:318.7×(1+10%)×(1+5%)=368.1(吨)清洗水用量:318.7×(1+10%)×5%=17.5(吨)发酵液中干物质含量为:93.2/318.7=29.24%由发酵工厂设计概论附录中查得,发酵液密度约为1.125g/cm3,则每日消耗发酵液体积为:318.7/1.125=283.3(m3)设发酵罐的装料系数为0.8,则所需发酵罐的总体积为:283.3/0.8=254.125(m3)取公称容积为100m3的发酵罐,每组安装4个同型号发酵罐,公称容积为100m3的发酵罐的标准椭圆封头容积为9.02 m3,发酵罐实际容积为:100+2×9.02=118 m3。实际发酵年产量为:富余量: 发酵罐台套数:N=取3组套发酵罐(一套备用),每日清洗发酵罐4个。发酵车间物料衡算表(表2.2):表2.2 发酵车间物料衡算表物料名称每天耗量(吨)每月(25天)耗量(吨)每年耗量(吨)发酵液318.77967.595610接种量31.87796.759561清洗水用量17.5437.55250发酵醪液368.19202.51104302.1.3 过滤工段物料衡算过滤工段物料流向如图所示(以天作为计算基准): 清洗水 过滤 发酵醪液 滤液 滤渣过滤工段包含板框过滤过程和真空抽滤过程,根据本设计的生产工艺,两次过滤发酵醪液,将大分子物质和未发酵杂质除去。根据板框过滤机的原理,过滤时洗涤板进水口关闭,洗涤时进料口关闭,因而清洗水不会进入滤液。假设滤渣的清洗水为发酵醪液的40%,发酵醪液中大分子等滤渣耗量为10%,则滤渣清洗水量:368.1×40%=147.24(吨)滤渣量:368.1×10%=36.81(吨)根据物料守恒,滤液量为:368.1-36.81=331.3(吨)过滤后,滤液中柠檬酸含量:44.61×97%×95%=41.11(吨)过滤工段柠檬酸损失量:44.61-41.11=3.5(吨)过滤工段物料衡算表(表2.3):表2.3 过滤工段物料衡算表物料名称每日消耗(吨)每月(25天)消耗(吨)每年消耗(吨)发酵醪液368.19202.5110430滤渣清洗水147.24368144172滤渣量36.81920.2511043续表2.3(产生)滤液331.38282.599390柠檬酸(损失)3.587.510502.1.4 离子交换吸附及解析工段物料衡算过滤工段物料流向如图下所示(以天作为计算基准):离子交换 滤液 清液 稀盐酸 解析 滤渣本设计采用弱碱性阴离子交换树脂对柠檬酸进行吸附提纯,并用柠檬酸-柠檬酸铵除去易碳化合物,较纯净的柠檬酸直接用稀盐酸进行解析,不再需要用离子交换树脂进行转型,解析后的溶液分别用732型阳离子交换树脂和315型阴离子交换树脂去除带正、负电荷的杂质离子,得到高纯度的柠檬酸溶液。滤液中柠檬酸含量:44.61×97%×95%=41.11(吨)离子交换树脂吸附率为90%,吸附柠檬酸的质量为:41.11×90%=37(吨)假设吸附用1:3的稀盐酸进行解析,解析过程无柠檬酸损失,则解析后解析液中柠檬酸的含量为37吨,稀盐酸的消耗量为:37×3=111(吨)吸附过程柠檬酸损失量为:41.11-37=4.11(吨)解析后的含柠檬酸清液经732型阳离子交换树脂和315型阴离子交换树脂去除带正、负电荷的杂质离子,清液质量为:37+111(1-10%)=136.9(吨)离子交换树脂吸附及解析工段物料衡算表(表2.4):表2.4 离子交换树脂吸附及解析工段物料衡算表物料名称每日消耗(吨)每月(25天)消耗(吨)每年消耗(吨)滤液331.38282.599390柠檬酸(提纯量)3792511100柠檬酸(损失量)4.11102.751233稀盐酸111277533300(除杂后)清液量136.93422.5410702.1.5 中和工段物料衡算中和工段物料流向如图所示: 氢氧化钠溶液 中和 清液 中和液柠檬酸与氢氧化钠溶液中和过程桉1:3比例进行中和反应(以天作为计算基准):C6H8O7+3NaOHC6H5O7Na3+3H2O中和用质量分数为20%的稀氢氧化钠,氢氧化钠的消耗量为: 37×120/(192×20%)=115.63(吨)产水量:37×54/192=10.41(吨)中和转化过程产率为98%,无水柠檬酸钠的产生量为:37×258.1×98%/192=48.74(吨)柠檬酸损失量:37×(1-98%)=0.74(吨)根据物料衡算,中和液总量为:136.9+115.63=252.53(吨)中和工段物料衡算表(表2.5):表2.5 中和工段物料衡算表物料名称每日耗量(吨)每月(25天)耗量(吨)每年耗量(吨)清液136.93422.541070氢氧化钠稀溶液115.632890.7534689无水柠檬酸(产量)48.741218.514622柠檬酸(损失)0.7418.5222产水量10.41260.253123中和液252.536313.25757592.1.6 浓缩工段物料衡算浓缩工段物料流向如图下图所示(以天作为计算基准):浓缩 中和液 浓缩液 水假定浓缩过程无柠檬酸钠损失,浓缩液中柠檬酸钠的含量为48.74吨,为能提高浓缩效率,减少热量损失,本设计采用逆流三效浓缩设备对溶液进行浓缩,假设浓缩液中柠檬酸钠的浓度为70%,则浓缩液质量为:48.74/70%=69.65(吨)浓缩蒸发水量为:252.53-69.65=182.88(吨)浓缩工段物料衡算表(表2.6):表2.6 浓缩工段物料衡算表物料名称每日耗量(吨)每月(25天)耗量(吨)每年耗量(吨)中和液252.536313.2575759浓缩液69.651741.2520895蒸发水量182.884572548642.1.7 结晶工段物料衡算结晶工段物料流向如图下图所示:结晶 浓缩液 湿晶体 母液(含柠檬酸钠)以天作为计算基准,湿晶体中二水柠檬酸钠的含量为50吨,设湿晶体含水量为10%,则湿晶体的总质量为:50×(1+10%)=55(吨)根据物料衡算,结晶母液总质量为:69.65-55=14.65(吨)母液中柠檬酸钠的含量为:48.76×(1-90%)=4.876(吨)假定干燥过程使用喷雾干燥系统,无晶体损失,则成品二水柠檬酸钠生产量为50吨,蒸发水量为5吨。结晶及干燥工段物料衡算表(表2.7)表2.7 结晶及干燥工段物料衡算表物料名称每日(吨)每月(25天)(吨)每年(吨)浓缩液耗量69.656313.2575759续表2.7母液14.65366.254395柠檬酸钠(损失)4.876121.91462.8二水柠檬酸钠(产量)50125015000(干燥)去水量512515002.2 热量衡算本设计中原料液的糊化、糖化,发酵罐的灭菌及原料液的灭菌,浓缩过程需要外接进行供热,对于规模生产企业采用直接蒸汽进行供热,本设计中各需供热过程才用直接蒸汽进行加热。2.2.1糖化车间热量衡算 本设计采用罐式连续蒸煮工艺,混合后浆液应用喷射液化器使浆液迅速由20升高至90进行糊化和糖化,一级喷射和二级喷射处理,再经喷射121 高温灭菌,进入发酵罐进入发酵阶段,以天作为计算基准。原料浆液中淀粉含量:617.64×0.72/2135.58=20.8%原料浆液的平均热容为:C=C淀粉x+C水(1-x) 式中:x浆液中淀粉含量;C淀粉 纯淀粉在平均温度下的热容 C淀粉=1.55KJ/(Kg·); C水 纯水在平均温度下的热容 C淀粉=4.181KJ/(Kg·);原料液的平均热容为:C=1.55×0.208+4.181×(1-0.208)=3.66 KJ/(Kg·)采用压力为0.4MPa 、121饱和水蒸气加热,排出蒸汽为121,水蒸气汽化潜热为2205 KJ/Kg,糊化及糖化过程耗热量:WD=3.66×2135.58×103×(90-20)=5.47×108(KJ)加热蒸汽耗量:mD=5.47×108/2205=2.48×105(Kg)=248(吨)一般蒸汽渗漏量为总蒸汽5%,蒸汽实际耗量为:248/(1-5%)=261.05(吨)一级喷射过程:一级喷射温度一般在98-100之间(取100),喷射总物料量2135.58吨,一级喷射耗热量:W14=3.66×2135.58×103×(100-20)=6.25×108(KJ)经一级喷射处理的料液流经层流罐(温度为80),进行二次喷射处理。二次喷射处理温度一般为120-128(取120),则,二次喷射耗热量:W24=3.66×2135.58×103×(120-80)=3.13×108(KJ)喷射过程总耗热量:W= W14+ W24=6.25×108+3.13×108=9.38×108(KJ)一般蒸汽渗漏量为总蒸汽5%,喷射过程蒸汽实际耗量为:9.38×108/(1-5%)×2205=447.79(吨)2.2.2灭菌过程热量衡算1.空罐灭菌过程: 查得20的水的比热容Cp=4.181 kJ/(kg ),=998.2 kg/m3 灭菌过程用121饱和水蒸气 排出蒸汽为121,水蒸气汽化热为2205 kJ/kg发酵罐罐体体积为200m3,设发酵罐所选材料为不锈钢1Cr18Ni9Ti,罐体重量为17.15 t,冷排管重3 t,不锈钢1Cr18Ni9Ti的比热容为0.5 kJ/(kg ),灭菌用0.1Mpa(表压)水蒸气灭菌,罐体由20升温至121,水蒸汽用量为:W11=(17150+3000)×0.5×(121-20)/2205=461.4 Kg/罐灭菌过程热损失:发酵罐罐外壁温度为70,其辐射与对流系数为: =33.9+0.19×(70-20)=43.4 kJ/(h·m2·K)设空罐灭菌时间为1.5小时,公称直径为100 m3的发酵罐表面积为100.48 m2,耗用水蒸气用量为:W21=1.5×100.48×43.4×(70-20)/2205=148.3 Kg/罐罐壁附着水升温至121,设壁附着洗涤水的平均厚度为1mm,水升温所消耗水蒸气量:W31=100.48×0.001×1000×(121-20)×4.181/2205=19.23 Kg/罐一般蒸汽渗漏量为总蒸汽消耗量的5%,空罐灭菌时蒸汽消耗量: W01=(461.4+148.3+19.23)/0.95=661.6 Kg/罐空罐灭菌过程产热量 Q0=661.6×2205=1.46×106 KJ/罐冷却水进口温度为10,出口温度为20,冷却水消耗量为: L01=1.46×106/(20-10)×4.181=34.9 吨/罐每天空罐灭菌加热蒸汽耗量: W1=4 W01=4×661.6=2646.4(Kg/天)每日空罐灭菌加热蒸汽产热量:Q0=4×1.46×106=5.84×106 (KJ/天)每日空罐灭菌冷却水耗量:L1=34.9×4=139.6(吨/天)2.实际灭菌过程设每次灭菌时间为3h,每日需要的输送物料流量为 318.7 吨物料灭菌所用蒸汽为:W12=318.7×1000×3.627×(121-20)/2205=1.17×108(KJ)一般蒸汽渗漏量为总蒸汽消耗量的5%,物料灭菌时蒸汽消耗量: W02=1.17×108/(0.95×2205)=55.85(吨 )实际物料灭菌蒸汽产生热量为:Q2=55.85×1000×2205=1.23×108 (KJ) 冷却水进口温度为10,出口温度为50,冷却水消耗量为:L2=1.23×108/(50-10)×4.181=735.5(吨/天)实际灭菌消耗加热水蒸气量:W= W01+ W02=55.85+2.6464=58.5(吨/天)实际灭菌消耗水蒸气用量:L=L1+L2=139.6+735.5=875.1(吨/天)2.2.3浓缩过程热量衡算浓缩过程水分蒸发量为182.88吨,浓缩液中柠檬酸钠的质量分数70%,浓缩过程中和液温度由室温20升至100,浓缩液比热容近似取为水的比热4.181 kJ/(kg ),则浓缩过程产热量:Q3=252.53×1000×(100-20)+182.88×1000×2258.77=4.98×108 (kJ)浓缩过程蒸汽消耗量:4.98×108 /2205=225.85(吨)浓缩过程蒸汽损失量一般为5%,实际蒸汽耗量为:225.85/(1-5%)=237.74(吨)各工段加热蒸汽及冷却水耗量衡算表(表2.8):表2.8 各工段热量及耗冷量衡算表名称每日(吨)每月(25天)(吨)每年(吨)糊化、糖化蒸汽耗量38.63965.7511589喷射过程蒸汽耗量66.36165919908灭菌过程蒸汽耗量58.51462.517550物料灭菌过程蒸汽耗量55.851396.2516755空罐灭菌蒸汽耗量2.646466.16793.92灭菌过程冷却水耗量875.121877.5262530浓缩过程蒸汽耗量237.745943.5713222.3 无菌空气耗量计算2.3.1发酵过程无菌空气耗量设发酵罐深层发酵平均通气量为0.18vvm,发酵周期60小时,每年每罐发酵120个周期,则:单罐发酵无菌空气耗气量:V1=100×0.8×0.18×60= 864(m3/h)单个发酵罐无菌空气年耗量: V2=864×120×60=6.25×106 (m3/年)单批发酵无菌空气年耗量: V2=4×864×120×60=2.5×107 (m3/年)发酵过程无菌空气年耗量:Va=2.5×107 ×2=5.0×107 (m3/年) 2.3.2种子罐无菌空气耗量种子罐通气量为0.9vvm,培养时间60h,接种量为10% 种子培养基装料系数为80%,选取种子罐容积为10 m3,查发酵工厂设计概论,种子罐内径为1800mm,罐柱高3600mm.根据实际生产需要选取适合的搅拌器及冷却装置(采用夹套冷却系统),设备材料依据发酵罐材质选择合金钢,各部件依据发酵罐设计选型进行选择,壁厚去8mm。为满足生产需求,取种子罐套数与发酵罐套数相同(3套,一套备用),每套4个种子罐。每日种子罐使用量为4个,单个种子罐无菌空气耗量: 10×0.8×0.9×60=432(m3/h)单个种子罐年用气量:432×60×120=3.11×106(m3/年)种子罐年用气量为:3.11×106 ×4×2=2.5×107 (m3/年)2.3.3发酵车间无菌空气单耗总用气量:V=5.0×107+2.5×107=5.25×107 (m3/年)根据设计计算,实际发酵年产量为:发酵车间无菌空气单耗:5.25×107/19993=2.63×103(m3/吨产品)发酵车间无菌空气消耗衡算(表2.9):表2.9 发酵车间无菌空气消耗衡算表名称每日用气(m3)每月(25天)用气(m3)每年用气(m3)单个