解直角三角形的知识点总结33541(5页).doc
-
资源ID:37859641
资源大小:326KB
全文页数:5页
- 资源格式: DOC
下载积分:15金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
解直角三角形的知识点总结33541(5页).doc
-解直角三角形的知识点总结33541-第 5 页 解直角三角形直角三角形的性质 1、直角三角形的两个锐角互余。 表示为:C=90°A+B=90°2、在直角三角形中,30°角所对的直角边等于斜边的一半。表示为:C=90°A=30°BC=AB3、直角三角形斜边上的中线等于斜边的一半。表示为: ACB=90°,D为AB的中点 ; CD=AB=BD=AD 4、勾股定理:5、射影定理:在直角三角形中,斜边上的高线是两直角边在斜边上的射影的比例中项,每条直角边是它们在斜边上的射影和斜边的比例中项ACB=90°CDAB , 6、常用关系式: 由三角形面积公式可得:ABCD=ACBC锐角三角函数的概念 1、 如图,在ABC中,C=90° 2、锐角A的正弦、余弦、正切都叫做A的锐角三角函数锐角三角函数之间的关系(1)平方关系: (2)弦切关系: tanA= 特殊角的三角函数值sincostan30°45°60°说明:锐角三角函数的增减性,当角度在0°90°之间变化时.(1)正弦值随着角度的增大(或减小)而增大(或减小)(2)余弦值随着角度的增大(或减小)而减小(或增大)(3)正切值随着角度的增大(或减小)而增大(或减小) 解直角三角形的概念仰角俯角北东西南hlii=h/l= tan在直角三角形中,除直角外,一共有五个元素,即三条边和两个锐角,由直角三角形中除直角外的已知元素求出所有未知元素的过程叫做解直角三角形。解直角三角形的理论依据:以上.对实际问题的处理(1)俯、仰角. (2)方位角、象限角.(3)坡角、坡度.补充:在两个直角三角形中,都缺解直角三角形的条件时,可用列方程的办法解决。典型例题:1. 在RtABC中,各边的长度都扩大2倍,那么锐角A的正弦、余弦 ()(A) 都扩大2倍 (B) 都扩大4倍 (C) 没有变化 (D) 都缩小一半2.在RtABC中,C=90°,sinA=,则cosB的值等于( )A B. C. D. 3.在正方形网格中,的位置如图所示,则的值为( ) ABCD4.在RtABC中,C=90º,A=15º,AB的垂直平分线与AC相交于M点,则CM:MB等于( )(A)2: (B):2 (C):1 (D)1:5.等腰三角形底边与底边上的高的比是,则顶角为 ()(A) 600 (B) 900(C) 1200(D) 1500东6.身高相等的三名同学甲、乙、丙参加风筝比赛,三人放出风筝线长、线与地面夹角如下表(假设风筝是拉直的),则三人所放的风筝中( )同学甲乙丙放出风筝线长100m100m90m线与地面夹角40º45º60ºA、甲的最高 B、丙的最高 C、 乙的最低D、丙的最低7.如图,一渔船上的渔民在A处看见灯塔M在北偏东60O方向,这艘渔船以28km/时的速度向正东航行,半小时到B处,在B处看见灯塔M在北偏东15O方向,此时,灯塔M与渔船的距离是() 8、河堤横断面如图所示,堤高BC5米,迎水坡AB的坡比1:(坡比是坡面的铅直高度BC与水平宽度AC之比),则AC的长是( )A5米B10米C15米D10米9.如图,铁路MN和公路PQ在点O处交汇,QON=30°公路PQ上A处距离O点240米如果火车行驶时,周围200米以内会受到噪音的影响那么火车在铁路MN上沿ON方向以72千米/时的速度行驶时,A处受噪音影响的时间为 A12秒 B16秒 C20秒 D24秒10、= 11、 在ABC中,A=30º,tan B= ,BC=,则AB的长为 .12、锐角A满足2 sin(A-15)=,则A= .13、已知tan B=,则sin= .14、 某人沿着有一定坡度的坡面前进了10米,此时他与水平地面的垂直距离为米,则这个破面的坡度为 .15、如图所示,小明在家里楼顶上的点A处,测量建在与小明家楼房同一水平线上相邻的电梯楼的高,在点A处看电梯楼顶部点B处的仰角为60°,在点A处看这栋电梯楼底部点C处的俯角为45°,两栋楼之间的距离为30m,则电梯楼的高BC为_米(保留根号)ABCDA16.如图,已知直线,相邻两条平行直线间的距离都是1,如果正方形ABCD的四个顶点分别在四条直线上,则 17.ABC中,C=90°,B=30°,AD是ABC的角平分线,若AC=求线段AD的长18.如图,在梯形ABCD中,ADBC,BDDC,C60°,AD4,BC6,求AB的长ABCD19、某兴趣小组用高为1.2米的仪器测量建筑物CD的高度如示意图,由距CD一定距离的A处用仪器观察建筑物顶部D的仰角为,在A和C之间选一点B,由B处用仪器观察建筑物顶部D的仰角为测得A,B之间的距离为4米,试求建筑物CD的高度ACDBEFG20、一副直角三角板如图放置,点C在FD的延长线上,ABCF,F=ACB=90°, E=45°,A=60°,AC=10,试求CD的长21、综合实践课上,小明所在小组要测量护城河的宽度。如图所示是护城河的一段,两岸ABCD,河岸AB上有一排大树,相邻两棵大树之间的距离均为10米.小明先用测角仪在河岸CD的M处测得=36°,然后沿河岸走50米到达N点,测得=72°。请你根据这些数据帮小明他们算出河宽FR(结果保留两位有效数字).(参考数据:sin 36°0.59,cos 36°0.81,tan36°0.73,sin 72°0.95,cos 72°0.31,tan72°3.08) ABCDEFMNR