广州市高考数学模拟试题精选汇总:数列03 Word版含答案(8页).doc
-广州市高考数学模拟试题精选汇总:数列03 Word版含答案-第 - 8 - 页数列03设数列a的前n项和为S,且满足S=2-a,n=1,2,3,(1)求数列a的通项公式;(4分)(2)若数列b满足b=1,且b=b+a,求数列b的通项公式;(6分)(3)设C=n(3- b),求数列 C的前n项和T 。(6分)已知数列的前项和为,且,数列满足,且点在直线上.()求数列、的通项公式;()求数列的前项和;()设,求数列的前项和.对nN 不等式所表示的平面区域为Dn,把Dn内的整点(横坐标与纵坐标均为整数的点)按其到原点的距离从近到远排成点列(x1,y1),(x2,y2),(xn,yn),求xn,yn;(2)数列an满足a1=x1,且n2时an=yn2证明:当n2时,;(3)在(2)的条件下,试比较与4的大小关系. 数列an满足4a1=1,an-1=(-1)nan-1-2an(n2),(1)试判断数列1/an+(-1)n是否为等比数列,并证明;(2)设an2bn=1,求数列bn的前n项和Sn.已知,点在函数的图象上,其中(1)证明数列是等比数列;(2)设,求及数列的通项;(3)记,求数列的前项和.设数列的前项和为,且满足=2-,(=1,2,3,)()求数列的通项公式;()若数列满足=1,且,求数列的通项公式;(),求的前项和 已知数列an的前n项和,数列bn满足.(1)求证数列bn是等差数列,并求数列an的通项公式;(2)设数列的前n项和为Tn,证明:且时,;(3)设数列cn满足(为非零常数,),问是否存在整数,使得对任意,都有.参考答案 (1)a=S=11分n2时,S=2-a1分S=2-a1分a=a+a2a= aa=1=1分a=()1分(2)b-b=()1分1分b-b=()+()=1分=2-b=3-1分b=1成立1分b=3-()(3)C=n()1分T=1×()+2()+n() T=1×()+(n-1) ()+n()=2+-n()=2+2-()-n()T=8-=8- 【解】()当, 当时, ,是等比数列,公比为2,首项 又点在直线上, , 是等差数列,公差为2,首项, 得 解:(1)当n=1时,(x1,y1)=(1,1) n=2时,(x2,y2)=(1,2) (x3,y3)=(1,3) n=3时,(x4,y4)=(1,4) n时 (xn,yn)=(1,n) (2)由 (3)当n=1时,时,成立 由(2)知当n3时,即 = 得证 解:(1)由 即 另: 是首项为3公比为-2的等比数列 (2)由 ()由已知, ,两边取对数得 ,即 是公比为2的等比数列. ()由()知 (*) 由(*)式得 又 解: ()n=1时,a1+S1=a1+a1=2a1=1 Sn=2-an即an+Sn=2 an+1+Sn+1=2两式相减:an+1-an+Sn+1-Sn=0即an+1-an+an+1=0,故有2an+1=anan0 (nN*)所以,数列an为首项a1=1,公比为的等比数列.an=(nN*)bn-b1=1+又b1=1,bn=3-2()n-1(n=1,2,3,) (3)所以解:(1)在中,令n=1,可得,即当时,即.,即当时,.又,数列bn是首项和公差均为1的等差数列.于是,.(2)由(1)得,所以由得于是确定Tn与的大小关系等价于比较与2n+1的大小由可猜想当时,.证明如下:证法1:当n=3时,由上验算显示成立.假设n=k+1时所以当n=k+1时猜想也成立综合可知,对一切的正整数,都有.证法2:当时 综上所述,当n=1,2时,当时(3)当n=2k1,k=1,2,3,时,式即为 依题意,式对k=1,2,3都成立,当n=2k,k=1,2,3,时,式即为 依题意,式对k=1,2,3都成立, ,又存在整数,使得对任意有.