正余弦定理知识点总结及题型分析(3页).doc
-正余弦定理知识点总结及题型分析-第 - 3 - 页解三角形复习一、知识点(一)正弦定理:其中是三角形外接圆半径.a=2RsinA, b=2RsinB, c=2RsinC(二)余弦定理: 由此可得:注:A是钝角;=A是直角;A是锐角;(三)三角形面积公式:(1)题型一:正余弦定理的基本应用:(四种题型:)(1)已知两角一边用正弦定理;(2)已经两边及一边对角用正弦定理;(3)已知两边及两边的夹角用余弦定理;(4)已知三边用余弦定理例1、在中,已知求例2已知下列各三角形中的两边及一角,判断三角形是否有解,并作出解答(1) (2)(3) (4)例3(1)在中,已知,则A= ;(2)若ABC的周长等于20,面积是,60°,则边= (3)、已知锐角三角形的边长分别为2、3、,则的取值范围是= (4)在ABC中,已知,则= 班级 姓名 题型二:判断三角形的形状例4(1)在中,若试判断的形状。(2)在中,若试判断的形状。(3)在中,若试判断的形状。例5(1)在中,已知,且,判断三角形的形状;(2)在中,且,判断其形状;题型三:三角形的面积的问题例6、(1)已知中, ,, 求、及外接圆的半径。(2)在中,已知 ()求角; ()若,的面积是,求题型四、正余弦定理的综合应用1、在中,角的对边分别为,.k.()求的值;()求的面积2、设的内角A、B、C所对的边长分别为a、b、c,且a cosB=3,b sinA=4()求边长a;()若的面积,求的周长