空间几何体的三视图和直观图学习课件(人教A版必修2).ppt
空间几何体的三视图和直观图,1.2,主要内容,1.2.2空间几何体的三视图,1.2.3空间几何体的直观图,1.2.1 中心投影与平行投影,中心投影与平行投影,1.2.1,投影,我们知道,光线是直线传播的,由于光的照射,在不透明物体后面的屏幕上可以留下这个物体的影子,这种现象叫做投影。 其中,我们称光线叫投影线,把留下物体的屏幕叫做投影面,投影面,投影线,中心投影,定义 把光由一点向外散射形成的投影,叫做中心 投影.,一个点光源把一个图形照射到一个平面上、这个图形的影子就是它在这个平面上的中心投影.,中心投影后的图形与原图形相比虽然改变较多、但直观性强、看起来与人的视觉效果一致、最像原来的物体、所以在绘画时、经常使用这种方法.,平行投影,定义 我们把一束平行光线照射下形成的投影,叫做平行投影.,平行投影的投影线是平行的. 在平行投影中,投影线正对着投影面时,叫做正投影,否则叫做斜投影.,斜投影,正投影,投影线斜对着投影面,投影面,光线,对比三种投影,(a)中心投影,(b)斜投影,(c)正投影,平行投影,探究,问题1:一个三角形ABC在中心投影下,得到三角形ABC, 问这两个三角形是否相似?为什么?,问题2:一个三角形ABC在平行投影投影下,得到三角形ABC, 问这两个三角形是否全等?为什么?,小结,投影 中心投影 平行投影,空间几何体的三视图,1.2.2,三个互相垂直的投影面,“视图”是将物体按正投影法向投影面投射时所得到的投影图,从左向右方向的投影线,从上到下方向的投影线,从前向后方向的投影线,三视图概念,三视图的形成,正视图,侧视图,俯视图,光线从几何体的上面向下面正投影所得的投影图称为“俯视图”,光线从几何体的前面向后面正投影所得的投影图称为“正视图”,光线从几何体的左面向右面正投影所得的投影图称为“侧视图”,三视图的平面位置,正视图,侧视图,俯视图,正视图、侧视图、俯视图在平面图中的一般位置,正视图、侧视图、俯视图统称为三视图,三视图的关系,结论: 1.一个几何体的正视图和侧视图的高度一样, 2.正视图与俯视图的长度一样 3.侧视图与俯视图宽度一样,正视图,侧视图,俯视图,定义:长、宽、高,长,宽,宽相等,长对正,高平齐,长:左、右方向的长度,宽:前、后方向的长度,高:上、下方向的长度,举例画出三视图,圆锥,正视图,侧视图,俯视图,正三棱锥,正视图,侧视图,俯视图,举例画出三视图,举例画出三视图,六棱柱,正视图,侧视图,俯视图,举例画出三视图,根据三视图想象其表示的几何体,根据三视图想象它们表示的几何体的结构特征,圆台,俯视图,正视图,侧视图,根据三视图想象它们表示的几何体的结构特征,正四棱台,正视图,侧视图,俯视图,简单组合体的三视图,知识小结,小结,三视图的概念 三视图的形成 三视图的平面位置 三视图的关系 三视图的举例 简单组合体的三视图,作业,P15 练习1,2,3,4 P20-21 习题1.2 1,2,3.,1.2.3 空间几何体的直观图,斜二测画法,问:正方体的每个面都是正方形,但在平面图中有几个面画成正方形?平行四边形?,观察正方体的平面图,正方形的水平直观图,x,y,x,y,水平直观图,1. 水平方向线段长度不变; 2. 竖直方向的线段向右倾斜450,长度减半; 3. 平行线段仍然平行.,变化规则,0,0,水平直观图,正三角形的水平直观图,M,0,水平直观图,直角梯形的水平直观图,A,D,x,y,正六边形的水平直观图的画法,水平直观图,斜二测画法,定义:上述画水平放置的平面图形的直观图的方法叫做斜二测画法,有如下步骤和规则,(3)水平线段等长,竖直线段减半.,(2)与坐标轴平行的线段保持平行;,(1)在原图形中建立平面直角坐标系xoy,同时建立直观图坐标系 ,确定水平面,,x,y,o,0,空间几何体的直观图,例1.画长、宽、高分别为4cm、3cm、2cm的长方体ABCD-ABCD的直观图?,水平方向的矩形画成平行四边形的直观图竖直方向(z轴)的线段长度不变,斜二测画法,由几何体的三视图可以得到几何体的直观图,反思提高,思考题:如图ABC是水平放置的ABC的直观图,则在ABC的三边及中线AD中,最长的线段是( ),小结,正方形的水平直观图 正三角形的水平直观图 直角梯形的水平直观图 正六边形的水平直观图 斜二测画法 长方体的直观图,作业,P19-20 练习 1,2,3,4,5 P21 习题1.2 A.4,5 B组1,2,3,