欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    时间序列分析-时间序列.ppt

    • 资源ID:3810678       资源大小:2.22MB        全文页数:75页
    • 资源格式: PPT        下载积分:12金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要12金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    时间序列分析-时间序列.ppt

    第一章 时间序列,本章目录 时间序列的分解 平稳序列 线性平稳序列和线性滤波 正态时间序列和随机变量的收敛性 严平稳序列及其遍历性 Hilbert空间中的平稳序列 平稳序列的谱函数 离散谱序列及其周期性,1.1 时间序列的分解,一.时间序列的定义: 时间序列:按时间次序排列的随机变量序列。 观测样本:随机序列各随机变量的观测样本。 个有序观 测值 一次实现或一条轨道:时间序列的一组实际观测。 时间序列分析的任务:数学建模,解释、控制或预报。,二.时间序列的分解,趋势项 ,季节项 ,随机项 注:1.单周期季节项: 只需要 且可设 2.随机项:可设 3.,例:某城市居民季度用煤消耗量,分解方法: 1.趋势项估计 (1)分段趋势(年平均) (2)线性回归拟合直线 (3)二次曲线回归 (4)滑动平均估计,2.估计趋势项后,所得数据 由季节项和随机项组成, 季节项估计 可由该数据的每个季节平均而得. 3. 随机项估计即为,方法一:分段趋势法 1 趋势项(年平均),减去趋势项后,所得数据,2、季节项,3.随机项的估计,方法二:回归直线法,一、趋势项估计 一元线性回归模型 最小二乘估计为 可得到,1. 直线趋势项,消去趋势项后,所得数据,2、季节项估 为,3. 随机项估计为,方法三: 二次曲线法,1. 二次项估计(趋势项),数据和二次趋势项估计,2. 季节项、随机项,例二、美国罢工数(51-80年)(滑动平均法),1. 趋势项(5项平均),2.季节项和随机项,例三、化学溶液浓度变化数据,一阶差分,三 时间序列和随机过程 设 是实数 的子集,如果对每个t属于T,都有一个随机变量 与之对应,就称随机变量的集合 是一个随机过程。 当T是全体整数或全体非负整数时,称相应的随机过程为随机序列。 把随机序列的指标集合T看成时间指标时,这个随机过程就是时间序列。 当T是全体实数或全体非负实数时,相应的随机过程称为连续时随机过程。 如果把T认为时间指标,连续是的随机过程就是连续的时间序列。,1.2 平稳序列,一 平稳序列 定义 如果时间序列 满足 (1) 对任何的 (2) 对任何的 (3) 对任何的 就称是 平稳时间序列,简称时间序列。称实数 为 的自协方差函数。 平稳序列中随机变量 的均值为 ,方差为 都是和t无关的常数。 协方差结构的平移不变性是平稳序列的特性,所以平稳序列是二阶矩平稳序列。,自协方差函数满足以下三条性质:,(1)对称性: 对所有的K成立。 (2)非负定性:对任何的 ,n阶自协方差矩阵 是非负定的矩阵。 (3)有界性: 对所有的k成立。 满足上述性质的实数列都称为非负定序列。,下面证明这些性质,对称性由定义直接得到。 为证明非负性,任取一个 维实向量,为证明有界性,我们先介绍一个常用的不等式.引理 (Schwarz不等式) 对任何方差有限的随机变量X和Y,有 证明 不妨设 ,关于a的一元 于是,判别式 取 时,有界性有Schwarz不等式得到:,线性相关性,定义: 自协方差矩阵退化的充分必要条件是存在非零的n维实向量 使得 这时我们称随机变量是线性相关的。,自相关系数 定义:设平稳序列 是标准化的序列 , 的自协方 差函数 称为平稳序列的自相关系数。,二.白噪声,最简单的平稳序列是白噪声,它在时间序列分析中有特殊的重要地位。 定义(白噪声) 设 是一个平稳序列,如果对任意的 称 是一个白噪声,记做 当 是独立序列时,称 是独立白噪声; 当 时,称为零均值白噪声; 当 称为标准白噪声。,例2.3 Poisson过程和Poisson白噪声,如果连续时的随机过程满足 (1) ,且对任何的ts0和非负整数k, (2)N(t)有独立增量性:对任何n1和 随机变量 相互独立,则称N(t)是一个强度为的Poisson过程。 数学期望和方差分别为,Poisson白噪声,定义: 满足上面三个条件称为Poisson白噪声。 ave 表示的样本均值,std表示样本的标准差。 下面的例子是Poisson白噪声的60个样本。,Poisson白噪声的60样本的产生,1. 随机产生服从(0,1)上均匀的200个样本: 2. 给出服从参数为1的指数分布的200个独立样本; 3. 给出参数为1的Poisson过程一条样本轨道在i=1,61上的取值;,参数为1的Poisson白噪声的60个样本I,样本II,标准正态白噪声的60个样本: A=randn(1,60);plot(A),三.正交平稳序列,设X和Y是方差有限的随机变量,如果E(XY)=0,就称X和Y是正交的,如果c o v(X,Y)=0,就称X和Y是不相关的。 定义 对于平稳序列 和 , (1) 如果对任何的 s, t Z, ,则称 和 是正交的; (2 )如果对任何的 s, t Z, ,则称 和 是不相关的。 定理2.2 设 和 分别是平稳序列 和 的自协方差函数, 记 定义,(1)如果 和 正交,则 是平稳序列,有自协方差函数 (2)如果 和 不相关,则 是平稳序列,有自协方差函数 证明:(1)当 和 正交,利用cov(X,Y)=E(XY)-E(X)E(Y)得到 (2)由上面的推导 得到。,1.3 线性平稳序列和线性滤波,一.有限运动平均 定义: 设 是WN(O, ),对于非负整数q和常数a0,a1,aq,我们称 是白噪声 的(有限)运动平均,简称为MA,运动平均又称 滑动平均。 MA的平稳性,例:,概率极限定理: 定理 (单调收敛定理) 如果非负随机变量序列单调不减: 则当 时,有 对于任何时间序列 ,利用单调收敛定理得到 定理 (控制收敛定理)如果随机变量序列 满足 和 时,则当 时, 并且,二. 线性平稳序列,定义:如果实数列 满足 则称 是绝对可和的。 对于绝对可和的实数列 ,定义零均值白噪声 的无穷滑动和 如下 ,则 是平稳序列。下面说明 是 平稳序列。 由 Schwarz不等式得到 于是Xt右边的无穷级数是a.s.绝对收敛的,从而是a.s.收敛的。 由于 所以用控制收敛定理得到 现对t,s Z,定义,利用公式可以知道 所以由控制收敛定理得到 这就说明了 是平稳序列,证明:当 时,定理:设 是WN(0, ),实数列 平方可和,线性平稳序列 由上述 定义,则自协方差函数,三.时间序列的线性滤波,对序列 进行滑动求和: 称为对 进行线性滤波。其中决定可和的 称为一个保时线性滤波器。 如果输入信号 是平稳列则输出 也是平稳列。 期望 协方差函数,例3.1 余弦波信号的滤波,信号St方差 ,噪声方差 ,信噪比,注:,1.4 正态时间序列和随机变量的收敛性,随机向量的数学期望和方差 矩阵随机向量 期望 随机向量 ,则X的协方差矩阵 协方差矩阵的计算公式 随机向量线性变换,如果存在m维常数列向量,mn常数矩阵B和iid的标准正态随机变量 使得Y= +BX,则称随机变量 服从m维正态分布。 这时EY= , =Var(Y)= Y的特征函数为 这是多维正态分布的等价定义。 记YN(, ),多维正态分布的充要条件,定理 4.1 的充要条件是对任何,二.正条平稳序列 定义:对于时间序列 ,如果对任何n 1和 有 服从多元正态分布,则称 为正态时间序列 特别当 还是平稳序列时,又称为正态平稳序列。,正态序列收敛定理,定理4.3 如果正态序列 ,依分布收敛到随机变量 则 定理4.4 如果 服从WN(0, ),实数列绝对可和,则有 定义的平稳序列时零均值正态序列,自协方差函数(3.5)给出。 证明:下证为正态序列,先证对任何 ,有 其中,对任何 , 定义 则有当 时, 有,由定理4.2, 得到 依分布收敛到 , 则 从而由 和定理4.1得到(4.9). 用同样方法可以证明: 对任何 有 其中 . 定理4.4成立.,1.5 严平稳序列及其遍历性,定义:设 是时间序列。如果对任意正整数n和k,随机变量 同分布,就称 是严平稳序列。 特征是分布平移不变 性:对任何固定的k,时间序列 和 同分布。 严平稳和宽平稳的关系:1.二阶矩有限的严平稳为宽平稳。 2.宽平稳一般不是严平稳。 3.正态平稳列既是宽平稳也是严平稳。 4.平稳序列 到 宽平稳序列 到 弱平稳序列。 5.严平稳序列到强平稳序列。,遍历性:1.时间序列一般只是一条轨道。 2.要用时间序列 的一次实现推断 的统计性质。 遍历性可以保证从一条轨道可以推断整体的统计性质。 如果严平稳序列是遍历的,从他的一次实现就可以推断出这个严平稳的所有有限维分布: 有遍历的严平稳序列被称为严平稳遍历序列。,严平稳序列定理,定理5.1 如果 是严平稳遍历序列,则有如下的结果: (1)强大数律:如果 则 (2)对任何多元函数 是严平稳遍历序列. 下面的定理在判断线性平稳序列的遍历性时时十分有用的。 定理5.2 如果 是独立同分布的WN(0, )实数列 平方可和, 则线性平稳序列 是严平稳序列的。,1.6 Hilbert 空间中的平稳序列,Hilbert空间 设 是平稳序列,令 所以 是一个线性空间。,在线性空间上定义内积, 则有 所以 是内积空间,在任何内积空间中都有Schwarz不等式 令距离 则有,三角不等式: 这样 又称为距离空间,不难看出在任意的内积空间上都可以定义距离,是它自然成为距离空间。 如果 也是内积空间和距离空间, 是 的子空间。 定义6.1 对 : (1)如果 ,则称 在 中收敛到 (2)如果当 时, 则称 是 中的基本列或Cauchy列。,完备的内积空间:每个基本列都是极限在空间内的内积空间。 又称Hilbert空间。 是Hilbert空间。 用 表示 中包含 的最小闭子空间 则 是Hilbert空间,称为由平稳序列 生成的Hilbert空间。 二.内积的连续性 定理(内积的连续性) 在内积空间中,如果 证明(1)由三角不等式 得到。,(2)有Schwarz不等式得到 例: n维Hilbert空间 是线性空间,定义内积 ,则为内积空间。 是完备的内积空间。 为欧氏模,例2 设 是零均值的平稳列, ,则它的线性组合全 体构成的内积空间 是Hilbert空间称为有X生成的Hilbert空间。实际上, 是线性空 间和内积空间下面我们来证明的完备性。 证明:先设 是标准的白噪声WN(0,1),对任何的线性组合 只要 由例1知道有 使得 当 取 时 于是 是完备的,对一般的零均值的平稳序列,可以设协方差阵 的秩是m, mn 有非退化矩阵B使得Y=BX有协方差矩阵 于是 且 为WN(0,1)的一段,由 知道 为 线性组合,从而是完备的。 三.复值时间序列 复随机变量:如果X和Y 是随机变量,称Z=X+iY是复随机变量。 如果EX和EY都存在,称Z=X+iY 的数学期存在,并且EZ=EX+iEY 二阶矩有限的复随机变量:如果 就称为Z的二阶矩有限 随机变量。,按时间次序排列的复值随机变量的序列 称为复时间序列。 如果复时间序列 满足 就称 是一个复值平稳序列,称 是 的自协方差函数。 当 ,称 是一个复值零均值白噪声。,1.7 平稳序列的谱函数,1.时域和频域 遍历的时间序列可以从延的时间分布进行统计分析,称为时域分析。 平稳时间序列的二阶性质也可以从其频率分解来研究,称为频域分析。 2.谱函数和谱密度 设平稳序列 有自协方差函数 (1)如果有-,上的单调不减右连续的函数F()使得 则称F()是 或 的谱分布函数,简称为谱函数。 (2)如果有-,上的非负函数f()使得 则称f()是 或 的谱密度函数或功率谱密度,简称为谱密度或 功率谱。,谱函数和谱密度的关系,若 有谱函数f() ,则变上限的积分 就是 的谱函数。当谱函数F()绝对连续,它的几乎处处导函数 就是谱函数,特别,当F()是连续函数,除去有限点外导函数存在 且连续,则 是谱密度。,谱函数存在唯一性定理 定理7.1 (Herglotz定理)平稳序列的谱函数是唯一存在的。 线性平稳序列的谱密度 定理7.2 如果 是WN(0, )实数列 平方可和,则线性平稳序列 有谱密度,两正交序列的谱 定理7.3 设 和 是相互正交的零均值的平稳序列,C是常 数,定义 (1)如果 和 分别有谱函数 则平稳序 列 有谱函数 (2)如果 和 分别有谱密度 ,则 有谱 密度,例,谱密度图,线性滤波与谱,设平稳序列有谱函数和自协方差函数,H=hj 是一个绝对 可和的保时线性滤波器。 当输入过程是时,输出过程是 的协方差函数 实数级数绝对收敛。,定理7.4 设 是平稳序列,H=h是绝对可和的保时线性滤波器, 和H(z)分别由上面定义。 (1)如果 有谱函数 ,则 有谱函数; (2)如果 有谱函数 ,则 有谱密度。 实值平稳序列的谱密度是偶函数。,1.8 离散谱序列及其周期性,一简单的离散谱序列 用 表示集合a,b上以为自变量的示性函数: 当 时,定义阶梯函数 则有F(-)=0,并且对任何的整数k, 所以F()是Zt的谱函数。,当平稳序列的谱函数是阶梯函数是,习惯上就把它称为离散谱函数。 把相应的平稳序列称为离散谱序列。 离散谱函数没有对应的谱密度,但可以逼近。 相应的按公式(7.3)定义 当,二.多个频率成分的离散谱序列 设随机变量 两两正交,满足 对于正整数p和 ,定义时间序列 是平稳序列,具有零均值和自协方差函数,

    注意事项

    本文(时间序列分析-时间序列.ppt)为本站会员(小**)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开