原核基因表达调控 (6).ppt
关于原核基因表达调控 (6)现在学习的是第1页,共66页绪论 原核生物和单细胞真核生物直接暴露在变幻莫测的环境中,食物供应毫无保障,只有能根据环境条件的改变合成各种不同的蛋白质,使代谢过程适应环境的变化,才能维持自身的生存和繁衍。自然选择倾向于保留高效率的生命过程。在一个每30min增殖一倍的109细菌群体中,若有一个细菌变成了29.5min增殖一倍,大约经过80天的连续生长后,这个群体中的99.9%都将具有29.5min增殖一倍的生长速度。现在学习的是第2页,共66页 一个大肠杆菌细胞中约有2500-3000个基因。估计正常情况下,可带有107个蛋白质,平均每个基因产生3000多个蛋白质分子。但大肠杆菌中一般带有15,000-30,000个核糖体,有50余种核糖体结合蛋白,数量也很惊人。此外,负责糖酵解系统的蛋白质数量也很大。而象半乳糖苷酶等诱导酶,其含量可少至每细胞仅1-5个分子。 现在学习的是第3页,共66页 一个体系在需要时被打开,不需要时被关闭。这种“开-关”(on-off)活性是通过调节转录来建立的,也就是说mRNA的合成是可以被调节的。当我们说一个系统处于“off”状态时,也有本底水平的基因表达,常常是每世代每个细胞只合成1或2个mRNA分子。所谓“关”实际的意思是基因表达量特别低,很难甚至无法检测。 科学家把这个从DNA到蛋白质的过程称为基因表达(gene expression),对这个过程的调节就称为基因表达调控(gene regulation或gene control)。要了解动、植物生长发育的规律、形态结构特征和生物学功能,就必须弄清楚基因表达调控的时间和空间概念,掌握了基因表达调控的秘密,我们手中就有了一把揭示生物学奥妙的金钥匙。 现在学习的是第4页,共66页 基因表达调控主要表现在以下几个方面: 转录水平上的调控(transcriptional regulation); mRNA加工成熟水平上的调控(differential processing of RNA transcript); 翻译水平上的调控(differential translation of mRNA). 原核生物中,营养状况(nutritionalstatus)和环境因素(environmental factor)对基因表达起着举足轻重的影响。在真核生物尤其是高等真核生物中,激素水平(hormone level)和发育阶段(developmental stage)是基因表达调控的最主要手段,营养和环境因素的影响力大为下降。 现在学习的是第5页,共66页现在学习的是第6页,共66页一、一、 乳糖操纵子的调控模式乳糖操纵子的调控模式 大肠杆菌乳糖操纵子(lactose operon)包括3个结构基因:Z、Y和A,以及启动子、控制子和阻遏子等。转录时,RNA聚合酶首先与启动区(promoter,P)结合,通过操纵区(operator,O)向右转录。转录从O区的中间开始,按ZYA方向进行,每次转录出来的一条mRNA上都带有这3个基因。转录的调控是启动区和操纵区进行的 .现在学习的是第7页,共66页现在学习的是第8页,共66页 Z编码-半乳糖苷酶;Y编码-半乳糖苷透过酶;A编码-半乳糖苷乙酰基转移酶。-半乳糖苷酶是一种-半乳糖苷键的专一性酶,除能将乳糖水解成葡萄糖和半乳糖外,还能水解其他-半乳糖苷(如苯基半乳糖苷)。-半乳糖苷透过酶的作用是使外界的-半乳糖苷(如乳糖)能透过大肠杆菌细胞壁和原生质膜进入细胞内。-半乳糖苷乙酰基转移酶的作用是把乙酰辅酶A上的乙酰基转到-半乳糖苷上,形成乙酰半乳糖。现在学习的是第9页,共66页 1 酶的诱导-lac体系受调控的证据在不含乳糖及-半乳糖苷的培养基中,lac+基因型每个大肠杆功细胞内大约只有1-2个酶分子。如果在培养基中加入乳糖,酶的浓度很快达到细胞总蛋白量的6%或7%,每个细胞中可有超过105个酶分子。 现在学习的是第10页,共66页现在学习的是第11页,共66页现在学习的是第12页,共66页 科学家把大肠杆菌细胞放在加有放射性35S标记的氨基酸但没有任何半乳糖诱导物的培养基中繁殖几代,然后再将这些带有放射活性的细菌转移到不含35S、无放射性的培养基中,随着培养基中诱导物的加入,-半乳糖苷酶便开始合成。分离-半乳糖苷酶,发现这种酶无35S标记。说明酶的合成不是由前体转化而来的,而是加入诱导物后新合成的。现在学习的是第13页,共66页 已经分离在有诱导物或没有诱导物的情况下都能产生lacmRNA的突变体,这种失去调节能力的突变体称为永久型突变体,为分两类:I型和O型。 I型:野生型为I+,突变型为I-O型:野生型为O+,突变型为Oc。 现在学习的是第14页,共66页 I+I-或O+Oc后,Z、Y、A结构基因均表现为永久表达,所以I基因被称为调节基因(regulatory gene)。研究发现,I基因是一个产生阻遏物的调节基因,其产物使体系关闭。I-突变体由于不能产生阻遏物,使细胞成为lac永久表达型。I-/I+局部二倍体由于带有一个正常阻遏物,使细胞中的lac仍然被抑制。 现在学习的是第15页,共66页 遗传学图谱分析指出,Oc突变位于I与Z之间,所以,lac体系的4个基因的序列为IOZY。通过这些观察,Jacob和Monod推断Oc突变代表DNA链上的一个位点或一个非编码区域,而不是一个基因,因为可编码的基因具有互补性,而Oc没有这一特性。O决定相邻Z基因的产物是诱导型合成还是永久型合成,O区域称为操纵基因。 现在学习的是第16页,共66页现在学习的是第17页,共66页现在学习的是第18页,共66页2. 操纵子模型操纵子模型 Jacob和Monod认为诱导酶(他们当时称为适应酶)现象是个基因调控问题,可以用实验方法进行研究,因此选为突破口,终于通过大量实验及分析,建立了该操纵子的控制模型。现在学习的是第19页,共66页现在学习的是第20页,共66页现在学习的是第21页,共66页 Z、Y、A基因的产物由同一条多顺反子的mRNA分子所编码。 这个mRNA分子的启动子紧接着O区,而位于I与O之间的启动子区(P),不能单独起动合成-半乳糖苷酶和透过酶的生理过程。 操纵基因是DNA上的一小段序列(仅为26bp),是阻遏物的结合位点。当阻遏物与操纵基因结合时,lacmRNA的转录起始受到抑制。诱导物通过与阻遏物结合,改变它的三维构象,使之不能与操纵基因结合,从而激发lacmRNA的合成。当有诱导物存在时,操纵基因区没有被阻遏物占据,所以启动子能够顺利起始mRNA的合成。现在学习的是第22页,共66页3. Lac操纵子的本底水平表达操纵子的本底水平表达 因为诱导物需要穿过细胞膜才能与阻遏物结合,而运转诱导物需要透过酶。在非诱导状态下有少量(1-5个mRNA分子)lac mRNA合成-本底水平永久型合成。 现在学习的是第23页,共66页4. 葡萄糖对葡萄糖对lac操纵子的影响操纵子的影响-代谢物阻遏效代谢物阻遏效应应 研究表明,葡萄糖对lac操纵子表达的抑制作用是间接的,因为存在一种大肠杆菌突变株,它正常的糖酵解过程受阻,葡萄糖-6-磷酸不能转化为下一步代谢中间物,该菌株能在有葡萄糖存在的情况下被诱导合成lac mRNA。现在学习的是第24页,共66页5. cAMP与代谢物激活蛋白与代谢物激活蛋白 现在学习的是第25页,共66页现在学习的是第26页,共66页 当葡萄糖和乳糖同时存在于培养基中时,lac启动子表达受阻,没有-半乳糖苷酶活性;当葡萄糖消耗完以后(图中箭头处),细胞内cAMP浓度增加,-半乳糖苷酶活性被诱导,一度停止生长的细胞又恢复分裂。如果将细菌放在缺乏碳源的培养基中,细胞内cAMP浓度就很高;若在含葡萄糖的培养基中培养,细菌中的cAMP浓度就会很低;如果将细菌置于甘油或乳糖等不进行糖酵解的碳源培养基中,细菌中cAMP的浓度也会很高。现在学习的是第27页,共66页现在学习的是第28页,共66页现在学习的是第29页,共66页 研究证实,葡萄糖所引起的代谢物抑制(Catabolite repression)现象的实质是该代谢物降低了细胞中cAMP的含量.事实上,cAMP-CAP复合物是lac体系的positive regulator,它们不能代替lacI和lacO的功能(negative regulator)。 cAMP-CAP不但能与DNA相结合,造成双螺旋弯曲,易于形成三元转录起始复合物,它还能直接影响RNA聚合酶的活性。Dominant negative(Trans-dominant)lacI-d,只要有这个环的亚基存在,lacI+基因产物(阻遏物)无法与O区相结合lac operon得到表达。 现在学习的是第30页,共66页6. lac操纵子操纵子DNA的调控区域的调控区域-P.O.区区 lac P(启动子区)从I基因结束到mRNA转录起始位点止,共长82bp(-82+1)O区就是阻遏物结合区,位于P区后半部分和转录起始区(-7+28),该区序列有对称性,其对称中心点在+11位。P区的CAMP-CAP结合区(-67-52)也有对称性,其对称位点在-60-59之间。现在学习的是第31页,共66页 在一个完全被诱导的细胞中,-半乳糖苷酶、透过酶及乙酰基转移酶的拷贝数比例为1:0.5:0.2,这个比例在一定程度上反映了以-半乳糖苷作为唯一碳源时细胞的需要。不同的酶在数量上的差异是由于在翻译水平上受到调节所致。 lac mRNA可能与翻译过程中的核糖体相脱离,从而终止蛋白质链的翻译。这种现象发生的频率取决于每一个后续的AUG密码子再度起始翻译的概率。 在lac mRNA分子内部,A基因比Z基因更易受内切酶作用发生降解,因此,在任何时候Z基因的完整拷贝数要比A基因多。现在学习的是第32页,共66页二、二、 色氨酸操纵子的调控模式色氨酸操纵子的调控模式 色氨酸操纵子(tryptophane operon)负责色氨酸的生物合成,当培养基中有足够的色氨酸时,这个操纵子自动关闭,缺乏色氨酸时操纵子被打开,trp基因表达,色氨酸或与其代谢有关的某种物质在阻遏过程(而不是诱导过程)中起作用。由于trp体系参与生物合成而不是降解,它不受葡萄糖或cAMP-CAP的调控。 色氨酸的合成分5步完成。每个环节需要一种酶,编码这5种酶的基因紧密连锁在一起,被转录在一条多顺反子mRNA上,分别以trpE、trpD、trpC、trpB、trpA代表,编码了邻氨基苯甲酸合成酶、邻氨基苯甲酸焦磷酸转移酶、邻氨基苯甲酸异构酶、色氨酸合成酶和吲哚甘油-3-磷酶合成酶。现在学习的是第33页,共66页 trpE基因是第一个被翻译的基因,和trpL和trpa(不是trpA)。trp操纵子中产生阻遏物的基因是trpR,该基因距trp基因簇很远,后者在大肠杆菌染色体图上25min处,而前者则位于90min处。在位于65min处还有一个trpS(色氨酸tRNA合成酶),它和携带有trp的tRNATrp也参与trp操纵子的调控作用。 L区编码了前导肽,当有高浓度Trp存在时,由于弱化子a的作用,转录迅速减弱停止,生成140核苷酸的前导RNA;当Trp浓度较低时,弱化子不起作用,转录得以正常进行,生成长约7kb的mRNA,操纵子中第一个结构基因的起始密码子AUG在+162处。现在学习的是第34页,共66页现在学习的是第35页,共66页1trp操纵子的阻遏系统操纵子的阻遏系统 trpR基因突变常引起trp mRNA的永久型合成,该基因产物因此被称为辅阻遏蛋白(aporepressor)。除非培养基中有色氨酸,否则这个辅阻遏蛋白不会与操纵区结合。辅阻遏蛋白与色氨酸相结合形成有活性的阻遏物,与操纵区结合并使之关闭转录trp mRNA。 阻遏-操纵机制对色氨酸来说是一个一级开关,主管转录是否启动,相当于粗调开关。trp操纵子中对应于色氨酸生物合成的还有另一个系统进行细调控,指示已经启动的转录是否继续下去。这个细微调控是通过转录达到第一个结构基因之前的过早终止来实现的,由色氨酸的浓度来调节这种过早终止的频率。现在学习的是第36页,共66页2弱化子与前导肽弱化子与前导肽 在trp mRNA 5端trpE基因的起始密码前有一个长162bp的mRNA片段被称为前导区,研究发现,当mRNA合成起始以后,除非培养基中完全没有色氨酸,转录总是在这个区域终止,产生一个仅有140个核苷酸的RNA分子,终止trp基因转录。因为转录终止发生在这一区域,并且这种终止是被调节的,这个区域就被称为弱化子。 分析前导肽序列,发现它包括起始密码子AUG和终止密码子UGA,编码了一个14个氨基酸的多肽。该多肽有一个特征,其第10位和11位有相邻的两个色氨酸密码子。正是这两个相连的色氨酸密码子(组氨酸、苯丙氨酸操纵子中都有这种现象)调控了蛋白质的合成。现在学习的是第37页,共66页现在学习的是第38页,共66页现在学习的是第39页,共66页现在学习的是第40页,共66页 当培养基中色氨酸的浓度很低时,负载有色氨酸的tRNATrp也就少,这样翻译通过两个相邻色氨酸密码子的速度就会很慢,当4区被转录完成时,核糖体才进行到1区(或停留在两个相邻的trp密码子处),这时的前导区结构是2-3配对,不形成3-4配对的终止结构,所以转录可继续进行,直到将trp操纵子中的结构基因全部转录。 当培养基中色氨酸浓度较高时,核糖体可顺利通过两个相邻的色氨酸密码子,在4区被转录之前就到达2区,使2-3区不能配对,3-4区自由配对形成基一环终止子结构,转录被终止,trp操纵子被关闭。现在学习的是第41页,共66页3trp操纵子弱化机制的实验依据操纵子弱化机制的实验依据 trpS5是温度敏感型突变株,它所编码的Trp-tRNAtrp合成酶只在30时有活性,42时无酶活性。比较野生型和突变型在42和30时,突变体的Trp操纵子与野生型一样受色氨酸浓度的调控。42时,突变体中Trp操纵子的表达不受色氨酸浓度的调控。 另有一个缺失前导区及D基因的突变体(trpLD102),该细菌在有色氨酸的培养基中仍有很高的色氨酸合成酶活性。现在学习的是第42页,共66页 TrpED53中L不缺失(弱化子存在),trpLD102中L缺失(弱化子不存在),缺失前导区后的表达比有前导区的表达要高得多,充分说明trp操纵子的表达调控除阻遏作用外,还受到前导区的影响,失去了这个因素就失去了一个调控机制。 现在学习的是第43页,共66页4阻遏与弱化作用的协调阻遏与弱化作用的协调 有实验证明,在不加色氨酸的培养基中,trp mRNA的合成仍然受到部分阻遏,现在一般认为,野生型细胞中同时存在着有活性和无活性的阻遏物,培养基中色氨酸浓度的变化,能够使这两种阻遏物间的平衡发生倾斜,最终做出关闭或启动trp操纵子的决定,从而维持一定的色氨酸含量。现在学习的是第44页,共66页 细菌中为什么要有弱化子系统呢?一种可能是阻遏物从有活性向无活性的转变速度极低,需要有一个能更快地做出瓜的系统,以保持培养基中适当的色氨酸水平。或者,弱化子系统主要是对外源色氨酸浓度做出反应。外源色氨酸浓度很低的信号虽然足以引起trp操纵子的去阻遏作用,但是这个信号还不足以很快引发内源色氨酸的合成。在这种环境下,弱化子就通过抗终止的方法来增加trp基因表达,从而提高内源色氨酸浓度。 那么为什么还要有阻遏体系呢?目前认为阻遏物的作用是当有大量外源色氨酸存在时,阻止非必需的先导mRNA的合成,它使这个合成系统更加经济现在学习的是第45页,共66页三、三、 其他操纵子的调控机制其他操纵子的调控机制1 半乳糖操纵子半乳糖操纵子 大肠杆菌半乳糖操纵子(galactose operon)包括3个结构基因: 异构酶(UDP-galactose-4epimerase,galE), 半乳糖-磷酸尿嘧啶核苷转移酶(galactose transferase, galT), 半乳糖激酶(galactose kinase, galk)。这3个酶的作用是使半乳糖变成葡萄糖-1-磷酸。GalR与galE、T、K及操纵区O等离得很远,而galR产物对galO的作用与lacI-lacO的作用相同。现在学习的是第46页,共66页 gal操纵子的特点: 它有两个启动子,其mRNA可从两个不同的起始点开始转录; 它有两个O区,一个在P区上游-67-53,另一个在结构基因galE内部。现在学习的是第47页,共66页 因为半乳糖的利用效率比葡萄糖低,人们猜想葡萄糖存在时半乳糖操纵子不被诱导,但实际上有葡萄糖存在时,gal操纵子仍可被诱导。现已分离到一些突变株,其中一类突变株能在不含葡萄糖的培养基中高水平合成半乳糖代谢酶类(gal结构基因高效表达);而另一类突变株中gal基因的表达完全依赖于葡萄糖,培养基中如无葡萄糖存在,这些细菌的gal基因不表达,不合成半乳糖代谢酶类。 现在学习的是第48页,共66页 分析gal操纵子P-O区的DNA序列发现,该操纵子确实存在两个相距仅5bp的启动子,可以分别起始mRNA的合成。每个启动子拥有各自的RNA聚合酶结合位点S1和S2。 从S1起始的转录只有在培养基中无葡萄糖时,才能顺利进行,RNA聚合酶与S1的结合需要半乳糖、CAP和较高浓度的cAMP。从S2起始的转录则完全依赖于葡萄糖,高水平的cAMP-CAP能抑制由这个启动子起始的转录。当有cAMP-CAP时,转录从S1开始,当无cAMP-CAP时,转录从S2开始。现在学习的是第49页,共66页 为什么gal操纵子需要两个转录起始位点?半乳糖不仅可以作为唯一碳源供细胞生长,而且与之相关的物质-尿苷二磷酸半乳糖(UDPgal)是大肠杆菌细胞壁合成的前体。在没有外源半乳糖的情况下,UDP-gal是通过半乳糖差向异构酶的作用由UDP-葡萄糖合成的,该酶是galE基因的产物。生长过程中的所有时间里细胞必须能够合成差向异构酶。现在设想只有S1一个启动子,那么由于这个启动子的活性依赖于cAMP-CRP,当培养基中有葡萄糖存在时就有能合成异构酶。假如唯一的启动子是S2,那么,即使在葡萄糖存在的情况下,半乳糖也将使操纵子处于充分诱导状态,这无疑是一种浪费。无论从必要性或经济性考虑,都需要一个不依赖于cAMP-CAP的启动子(S1)对高水平合成进行调节。现在学习的是第50页,共66页2 阿拉伯糖操纵子阿拉伯糖操纵子 阿拉伯糖(arabinose)是另一个可以为代谢提供碳源的五碳糖。在大肠杆菌中阿拉伯糖的降解需要3个基因:araB、araA和araD,分别编码3个酶:araB基因编码核酮糖激酶(ribulokinase),araA编码L-阿拉伯糖异构酶(L-arabinose isomerase),araD编码L-核酮糖-5-磷酸-4-差向异构酶(L-ribulose-5phosphate-4epimerase)。与araBAD相邻的是一个复合的启动子区域和一个调节基因araC,这个AraC蛋白同时显示正、负调节因子的功能。AraBAD和araC基因的转录是分别在两条链上以相反的方向进行的。在标准的遗传学图谱上,araBAD基因簇从启动子PBAD开始向左进行转录,而araC基因则是从Pc向右转录。现在学习的是第51页,共66页现在学习的是第52页,共66页 AraC蛋白作为PBAD活性正、负调节因子的双重功能是通过该蛋白的两种异构体来实现的。Pr是起阻遏作用的形式,可以与现在尚未鉴定的类操纵区位点相结合,而Pj是起诱导作用的形式,它通过与PBAD启动子结合进行调节。在没有阿拉伯糖时,Pr形式占优势;一旦有阿拉伯糖存在,它就能够与AraC蛋白结合,使平衡趋向于Pi形式。这样,阿拉伯糖的诱导作用就可以解释为阿拉伯糖与Pr的结合,使Pr离开它的结合位点,然后,产生大量的Pi,并与启动子结合。 现在学习的是第53页,共66页现在学习的是第54页,共66页 因为培养基中含有葡萄糖,所以cAMP-CAP没有与操纵区位点相结合,AraC蛋白处于Pr形式并与A位点结合,RNA聚合酶很少再与Pc结合,araC基因虽然仍有转录,但受到抑制,只有少量 AraC蛋白形成,整个系统几乎处于静止状态。 没有葡萄糖,也没有阿拉伯糖,因为没有诱导物,尽管有cAMP-CAP与操纵区位点相结合,AraC蛋白仍以Pr形式为主,无法与操纵区B位点相结合,无araBAD mRNA转录。无葡萄糖,阿拉伯糖时,大量araC基因产物以Pi形式存在,并分别与操纵区B、A位点相结合,在cAMP-CAP的共同作用下,araC和araBAD基因大量表达,操纵子充分激活。现在学习的是第55页,共66页3. 组氨酸操纵子组氨酸操纵子 与His降解代谢有关的两组酶类被称为hut酶(histidine utilizing enzyme),控制这些酶合成的操纵子被称为hut operon。由一个多重调节的操纵子控制,有两个启动子,两个操纵区及两个正调节蛋白。Hut操纵子共编码4种酶和一个阻遏物。4种酶分别由hutG、hutH、hutI及hutU基因编码,阻遏物则由hutC基因编码。在产气克氏菌中,以上基因构成两个转录单位,hutI、hutG、hutC和hutU、hutH分别被转录合成两条mRNA长链。这两个转录单位各自都有一个启动子和一个操纵区,其转录过程都是从左向右进行的,hutC阻遏物能与每个操纵区相结合。现在学习的是第56页,共66页现在学习的是第57页,共66页 无论以组氨酸作为唯一碳源或氮源,hut操纵子都会处于有活性状态。Hut操纵子的每一个启动子上都有cAMP-CAP结合位点,当碳供应匮乏时,能合成cAMP,出现cAMP-CAP复合物,并与操纵区上的相应位点结合,诱发基因转录。虽然尚不清楚氮源缺乏时的信号是什么,但它很可能也是一个正效应子。 现在学习的是第58页,共66页4. 多启动子调控的操纵子多启动子调控的操纵子 I rRNA操纵子大肠杆菌rRNA操纵子(rrnE)上有两个启动子,P1和P2。P1是强启动子,营养充沛时,由P1起始的转录产物比由P2起始的转录产物高3-5倍。当营养匮乏时,P1的作用被抑制,但P2仍有功能。 现在学习的是第59页,共66页II. 核糖体蛋白SI操纵子核糖体蛋白SI操纵子(rpsA),它也受应急反应调节。RpsA有4个启动子,P1、P2是强启动子,平时主要依靠它们来启动基因的表达,合成SI蛋白。P3、P4是弱启动子,只有在紧急情况下,P1、P2启动子受ppGpp的抑制,由P3、P4起始合成的SI蛋白维持了生命的最低需要。 现在学习的是第60页,共66页III. Dna Q蛋白操纵子Dna Q蛋白是DNA聚合酶全酶的亚基之一,其主要功能是校正DNA复制中可能出现的错误。在RNA聚合酶活性较低时,操纵子的转录由弱启动子P2控制;而RNA聚合酶活性较高时,就开始利用强启动子P1。 现在学习的是第61页,共66页四、四、 原核生物种的转录后调控原核生物种的转录后调控 1稀有密码子对翻译的影响稀有密码子对翻译的影响 已知dnaG和rpoD(编码RNA聚合酶亚基)及rpsU(30S核糖体上的S21蛋白)属于大肠杆菌基因组上的同一个操纵子,而这3个基因产物在数量上却大不相同,每个细胞内仅有dnaG产物50拷贝,而rpoD为2800拷贝,rpsU则高达40 000拷贝之多。细胞通过翻译调控,解决了这个问题。 研究dnaG序列发现其中含有不少稀有密码子,也就是说这些密码子在其他基因中利用频率很低,而在dnaG中却很高。 许多调控蛋白如LacI、AraC、TrpR等在细胞内含量也很低,编码这些蛋白的基因中密码子的使用频率和dnaG相似,而明显不同于非调节蛋白。高频率使用这些密码子的基因翻译过程极容易受阻,影响了蛋白质合成的总量。现在学习的是第62页,共66页2. 重叠基因对翻译的影响重叠基因对翻译的影响 重叠基因最早在大肠杆菌噬菌体X174中发现,用不同的阅读方式得到不同的蛋白质,丝状RNA噬菌体、线粒体DNA和细菌染色体上都有重叠基因存在。 Trp操纵子由5个基因(trpE、D、C、B、A)组成,在正常情况下,操纵子中5个基因产物是等量的,但trpE突变后,其邻近的trpD产量比下游的trpBA产量要低得多。这种与蛋白无关的表达调控,已被证实是在翻译水平上的调控。现在学习的是第63页,共66页 研究trpE和trpD以及trpB和trpA两对基因中核苷酸序列与翻译耦联的关系,发现trpE基因的终止密码子和trpD基因的起始密码子共用一个核苷酸。 由于trpE的终止密码子与trpD的起始密码重叠,trpE翻译终止时核糖体立即处在起始环境中,这种重叠的密码保证了同一核糖体对两个连续基因进行翻译的机制。现在学习的是第64页,共66页3. RNA高级结构对翻译的影响高级结构对翻译的影响 以RNA噬菌体f2的RNA作为模板,在大肠杆菌无细胞系统中进行蛋白质合成时,大部分合成外壳蛋白,RNA聚合酶只占外壳蛋白的1/3。用同位素标记分析RNA噬菌体几种蛋白质的起译过程,发现外壳蛋白起译频率比合成酶至少要高3倍。 研究发现f2外壳蛋白基因的琥珀突变也影响了RNA聚合酶合成的起始。但若该突变不是发生在外壳蛋白接近翻译起始区,而是较靠后的位点,对RNA聚合酶的起译就没有影响。现在一般认为,聚合酶的翻译起始区被RNA的高级结构所掩盖,外壳蛋白的起始翻译破坏了RNA的立体构象,使核糖体有可能与翻译起始区结合,导致聚合酶的起译。用甲醛处理RNA可以增加聚合酶的产量,这说明RNA的高级结构对基因表达调控的可能性。现在学习的是第65页,共66页感谢大家观看感谢大家观看现在学习的是第66页,共66页