欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    不定积分基本公式表讲稿.ppt

    • 资源ID:38213740       资源大小:650KB        全文页数:19页
    • 资源格式: PPT        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    不定积分基本公式表讲稿.ppt

    关于不定积分基本公式表第一页,讲稿共十九页哦; )1(,11d21 Cxxx ) )( (;|lnd1 3Cxxx ) )( (;lnd 4Caaxaxx ) )( (不定积分基本公式表不定积分基本公式表; )(d 1为为常常数数) )( (kCkxxk ;ede, e Cxaxx 时时当当第二页,讲稿共十九页哦;) )( ( Cxxx sindcos 5;) )( ( Cxxx cosdsin 6;) )( ( Cxxx tandsec 72;) )( ( Cxxx cotdcsc 82;) )( ( Cxxxx secdtansec 9;) )( ( Cxxxx cscdcotcsc 10第三页,讲稿共十九页哦;) )( (CxCxxx arccos arcsin1d 112 .cotarctan1122CxCxxx arc d ) )( (第四页,讲稿共十九页哦;lnd1Cxxx 当当 x 0 时,时,,1)(lnxx 因为因为所以所以.)ln(d1Cxxx 综合以上两种情况,当综合以上两种情况,当 x 0 时,得时,得. |lnd1Cxxx 例例 1求不定积分求不定积分.d1 xx解解. 01 xx的的定定义义域域为为被被积积函函数数第五页,讲稿共十九页哦例例 2求不定积分求不定积分.d1)2( xx解解先把被积函数化为幂函数的形式,再利用基本积先把被积函数化为幂函数的形式,再利用基本积分公式,分公式,( (1) ) xxxxxdd252Cx 1251251.723Cxx ( (2) )Cx 1211211 xxxxdd121Cx 212得得.2Cx ;d)1(2 xxx第六页,讲稿共十九页哦例例 3求不定积分求不定积分.de2 xxx解解 xxxxxd)e2(de2Cx )e2ln()e2(.2ln1e2Cxx 第七页,讲稿共十九页哦法则法则 1两个函数的代数和的不定积分等于这两个两个函数的代数和的不定积分等于这两个函数不定积分的代数和函数不定积分的代数和,.d)(d)(d)()( xxgxxfxxgxf即即二、不定积分的基本运算法则二、不定积分的基本运算法则第八页,讲稿共十九页哦法则法则1 可推广到有限多个函数代数和的情况,可推广到有限多个函数代数和的情况,即即 xxfxfxfnd)()()(21.d)(d)(d)(21 xxfxxfxxfn 根据不定积分定义,只须验证上式右端的导数根据不定积分定义,只须验证上式右端的导数等于左端的被积函数等于左端的被积函数.).()(xgxf xxgxxfdd)()(xxgxxfdd)()(证证第九页,讲稿共十九页哦法则法则 2被积函数中的不为零的常数因子可以提到被积函数中的不为零的常数因子可以提到积分号前面积分号前面,xxfkxxkfd)(d)( (k 为不等于零的常数为不等于零的常数) )证证类似性质类似性质 1 的证法,的证法,有有即即 xxfkd)( xxfkd)().(xkf 第十页,讲稿共十九页哦例例 4求不定积分求不定积分.d)2sin2(xxxxex 但是由于但是由于 任意常数之和还是任意常数,任意常数之和还是任意常数,xxxxexd)2sin2(xxxxxxexd2sin2dd32521522)cos(2CxCxCex)22(54cos232125CCCxxex.54cos225Cxxex其中每一项虽然都应有一个积分常数,其中每一项虽然都应有一个积分常数,解解 所以只需在最后写出一所以只需在最后写出一个积分常数个积分常数 C 即可即可.第十一页,讲稿共十九页哦 求积分时,如果直接用求积分的两个运算法则和基求积分时,如果直接用求积分的两个运算法则和基本公式就能求出结果,本公式就能求出结果,三、直接积分法三、直接积分法 或对被积函数进行或对被积函数进行简单的恒等变形简单的恒等变形 (包括代数和三角的恒等变形包括代数和三角的恒等变形) , 在用求不定积分的两个运算法则及基本公式就能在用求不定积分的两个运算法则及基本公式就能求出结果,求出结果, 这种求不定积分的方法成为这种求不定积分的方法成为直接积分直接积分法法第十二页,讲稿共十九页哦例例 5求求.d)1(23 xxx xxxd)1(23 xxxxxd331232 xxxxd3312 xxxxxxxdd3d13d2.213|ln312Cxxxx 解解第十三页,讲稿共十九页哦例例 6求求.)1(12222xxxxdxxxxxd)1()1(2222xxxxxxxxdd)1()1(1222222xxxxdd1122.arctan1Cxx解解xxxxd)1(12222第十四页,讲稿共十九页哦例例 求求.124xxxdxxxd11124xxxxxxdd111)1)(1(2222xxxxdd2211)1(.arctan33Cxxx解解xxxd124第十五页,讲稿共十九页哦例例 8求求.sincos2cosxxxxdxxxxxdsincossincos22xxxdsincos.cossinCxx解解xxxxdsincos2cos第十六页,讲稿共十九页哦例例 9求求.sincos122xxxdxxxxxd2222sincossincosxxxxdd22sin1cos1.cottanCxx解解xxxd22sincos1xxxxdd22sin1cos1第十七页,讲稿共十九页哦例例 10求求.tan2xxdxxxdd2sec.tanCxx解解xxd1sec2xxd2tan第十八页,讲稿共十九页哦感谢大家观看感谢大家观看第十九页,讲稿共十九页哦

    注意事项

    本文(不定积分基本公式表讲稿.ppt)为本站会员(石***)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开