高中理科数学导数求参数取值范围专题复习(8页).doc
-
资源ID:38437342
资源大小:497KB
全文页数:8页
- 资源格式: DOC
下载积分:15金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
高中理科数学导数求参数取值范围专题复习(8页).doc
-高中理科数学导数求参数取值范围专题复习-第 8 页导数中的求参数取值范围问题一、 常见基本题型:(1)已知函数单调性,求参数的取值范围,如已知函数增区间,则在此区间上导函数,如已知函数减区间,则在此区间上导函数。(2)已知不等式恒成立,求参数的取值范围问题,可转化为求函数的最值问题。 (3)知函数图象的交点情况,求参数的取值范围,可转化为求极值问题R,函数.(R,e为自然对数的底数) (1)若函数内单调递减,求a的取值范围; (2)函数是否为R上的单调函数,若是,求出a的取值范围;若不是,请说明理由.例2:已知函数,若函数的图像在点处的切线的倾斜角为,对于任意,函数在区间上总不是单调函数,求的取值范围; 例3.已知函数()求函数的单调区间;()设,若对任意,不等式 恒成立,求实数的取值范围例4设函数, (1)当a0时,f(x)h(x)在(1,)上恒成立,求实数m的取值范围; (2)当m2时,若函数k(x)f(x)h(x)在1,3上恰有两个不同零点,求实数a的取值范围例5.已知函数若函数在1,4上是减函数,求实数a的取值范围。例6.已知函数 若存在,使成立,求的取值范围;例7.已知函数,设在(0,2)上有极值,求a的取值范围.例8.设函数例9已知三次函数图象上点(1,8)处的切线经过点(3,0),并且在x=3处有极值.() 求的解析式.() 当时, >0恒成立,求实数m的取值范围.例10.已知函数处取得极值(1) 求函数的解析式.(2) 若过点可作曲线y=的三条切线,求实数m的取值范围.例11已知且。(1)设,求的解析式。(2)设,试问:是否存在,使在()上是单调递减函数,且在()上是单调递增函数;若存在,求出的值;若不存在,说明理由。参考答案1. 解: (1) 上单调递减, 则 对 都成立, 对都成立. 令,则 (2)若函数在R上单调递减,则 对R 都成立 即 对R都成立. 对R都成立 令, 图象开口向上 不可能对R都成立 若函数在R上单调递减,则 对R 都成立, 即 对R都成立, 对R都成立.故函数不可能在R上单调递增.综上可知,函数不可能是R上的单调函数 2解: 令得, 故两个根一正一负,即有且只有一个正根 函数在区间上总不是单调函数 在上有且只有实数根 故, 而单调减, ,综合得 3 解:(I)的定义域是 由及 得;由及得, 故函数的单调递增区间是;单调递减区间是 (II)若对任意,不等式恒成立, 问题等价于, 由(I)可知,在上,是函数极小值点,这个极小值是唯一的极值点,故也是最小值点,所以; 当时,;当时,;当时,; 问题等价于 或 或 解得 或 或 即,所以实数的取值范围是。 4.解:(1)由a0,f(x)h(x), 可得mlnxx,x(1,),即m.记(x),则f(x)h(x)在(1,)上恒成立等价于m(x)min.求得(x)当x(1,e),(x)0;当x(e,)时,(x)0.故(x)在xe处取得极小值,也是最小值,即(x)min(e)e,故me.(2) 函数k(x)f(x)h(x)在1,3上恰有两个不同的零点等价于方程x2lnxa, 在1,3上恰有两个相异实根 令g(x)x2ln,则g(x)1.当x1,2)时,g(x)0;当x(2,3时,g(x)0.g(x)在(1,2)上是单调递减函数,在(2,3上是单调递增函数故g(x)ming(2)22ln2.又g(1)1,g(3)32ln3,g(1)g(3),只需g(2)ag(3)故a的取值范围是(2ln2,32ln3. 5 解:由,得 又函数为1,4上的单调减函数。则在1,4上恒成立, 所以不等式在1,4上恒成立即在1,4上恒成立。 设,显然在1,4上为减函数, 所以的最小值为 的取值范围是 6 解:(1)即 令 时,时, 在上减,在上增. 又时,的最大值在区间端点处取到. 在上最大值为 故的取值范围是, 7 解:由可得,8()由(2)9分析:(1)10略解(1)求得(2)设切点为11分析:(1)易求c=1,(2),由题意在()上是单调递减函数,且在()上是单调递增函数知,是极小值,由得当,时,是单调递增函数;时,是单调递减函数。所以存在,使原命题成立。