高中数学解题基本方法(24页).doc
-高中数学解题基本方法-第 23 页高中数学解题基本方法换元法解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法。换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理。换元法又称辅助元素法、变量代换法。通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来。或者变为熟悉的形式,把复杂的计算和推证简化。它可以化高次为低次、化分式为整式、化无理式为有理式、化超越式为代数式,在研究方程、不等式、函数、数列、三角等问题中有广泛的应用。换元的方法有:局部换元、三角换元、均值换元等。局部换元又称整体换元,是在已知或者未知中,某个代数式几次出现,而用一个字母来代替它从而简化问题,当然有时候要通过变形才能发现。例如解不等式:4220,先变形为设2t(t>0),而变为熟悉的一元二次不等式求解和指数方程的问题。三角换元,应用于去根号,或者变换为三角形式易求时,主要利用已知代数式中与三角知识中有某点联系进行换元。如求函数y的值域时,易发现x0,1,设xsin ,0,,问题变成了熟悉的求三角函数值域。为什么会想到如此设,其中主要应该是发现值域的联系,又有去根号的需要。如变量x、y适合条件xyr(r>0)时,则可作三角代换xrcos、yrsin化为三角问题。均值换元,如遇到xyS形式时,设xt,yt等等。我们使用换元法时,要遵循有利于运算、有利于标准化的原则,换元后要注重新变量范围的选取,一定要使新变量范围对应于原变量的取值范围,不能缩小也不能扩大。如上几例中的t>0和0,。、再现性题组:1.ysinx·cosxsinx+cosx的最大值是_。2.设f(x1)log(4x) (a>1),则f(x)的值域是_。3.已知数列a中,a1,a·aaa,则数列通项a_。4.设实数x、y满足x2xy10,则xy的取值范围是_。5.方程3的解是_。6.不等式log(21) ·log(22)2的解集是_。【简解】1小题:设sinx+cosxt,,则yt,对称轴t1,当t,y;2小题:设x1t (t1),则f(t)log-(t-1)4,所以值域为(,log4;3小题:已知变形为1,设b,则b1,b1(n1)(-1)n,所以a;4小题:设xyk,则x2kx10, 4k40,所以k1或k1;5小题:设3y,则3y2y10,解得y,所以x1;6小题:设log(21)y,则y(y1)<2,解得2<y<1,所以x(log,log3)。、示范性题组:例1. 实数x、y满足4x5xy4y5 ( 式) ,设Sxy,求的值。(93年全国高中数学联赛题)【分析】 由Sxy联想到cossin1,于是进行三角换元,设代入式求S和S的值。【解】设代入式得: 4S5S·sincos5 解得 S ; -1sin21 385sin213 此种解法后面求S最大值和最小值,还可由sin2的有界性而求,即解不等式:|1。这种方法是求函数值域时经常用到的“有界法”。【另解】 由Sxy,设xt,yt,t, 则xy±代入式得:4S±5=5, 移项平方整理得 100t+39S160S1000 。 39S160S1000 解得:S【注】 此题第一种解法属于“三角换元法”,主要是利用已知条件Sxy与三角公式cossin1的联系而联想和发现用三角换元,将代数问题转化为三角函数值域问题。第二种解法属于“均值换元法”,主要是由等式Sxy而按照均值换元的思路,设xt、yt,减少了元的个数,问题且容易求解。另外,还用到了求值域的几种方法:有界法、不等式性质法、分离参数法。和“均值换元法”类似,我们还有一种换元法,即在题中有两个变量x、y时,可以设xab,yab,这称为“和差换元法”,换元后有可能简化代数式。本题设xab,yab,代入式整理得3a13b5 ,求得a0,,所以S(ab)(ab)2(ab)a,,再求的值。例2 ABC的三个内角A、B、C满足:AC2B,求cos的值。(96年全国理)【分析】 由已知“AC2B”和“三角形内角和等于180°”的性质,可得 ;由“AC120°”进行均值换元,则设 ,再代入可求cos即cos。【解】由ABC中已知AC2B,可得 ,由AC120°,设,代入已知等式得:2,解得:cos, 即:cos。【另解】由AC2B,得AC120°,B60°。所以2,设m,m ,所以cosA,cosC,两式分别相加、相减得:cosAcosC2coscoscos,cosAcosC2sinsinsin,即:sin,代入sincos1整理得:3m16m120,解出m6,代入cos。【注】 本题两种解法由“AC120°”、“2”分别进行均值换元,随后结合三角形角的关系与三角公式进行运算,除由已知想到均值换元外,还要求对三角公式的运用相当熟练。假如未想到进行均值换元,也可由三角运算直接解出:由AC2B,得AC120°,B60°。所以2,即cosAcosC2cosAcosC,和积互化得:2coscoscos(A+C)cos(A-C),即coscos(A-C)(2cos1),整理得:4cos2cos30,解得:cos y , , x例3. 设a>0,求f(x)2a(sinxcosx)sinx·cosx2a的最大值和最小值。【解】 设sinxcosxt,则t-,,由(sinxcosx)12sinx·cosx得:sinx·cosx f(x)g(t)(t2a) (a>0),t-,t-时,取最小值:2a2a当2a时,t,取最大值:2a2a ;当0<2a时,t2a,取最大值: 。 f(x)的最小值为2a2a,最大值为。【注】 此题属于局部换元法,设sinxcosxt后,抓住sinxcosx与sinx·cosx的内在联系,将三角函数的值域问题转化为二次函数在闭区间上的值域问题,使得容易求解。换元过程中一定要注意新的参数的范围(t-,)与sinxcosx对应,否则将会出错。本题解法中还包含了含参问题时分类讨论的数学思想方法,即由对称轴与闭区间的位置关系而确定参数分两种情况进行讨论。一般地,在遇到题目已知和未知中含有sinx与cosx的和、差、积等而求三角式的最大值和最小值的题型时,即函数为f(sinx±cosx,sinxcsox),经常用到这样设元的换元法,转化为在闭区间上的二次函数或一次函数的研究。例4. 设对所于有实数x,不等式xlog2x loglog>0恒成立,求a的取值范围。(87年全国理)【分析】不等式中log、 log、log三项有何联系?进行对数式的有关变形后不难发现,再实施换元法。【解】 设logt,则loglog3log3log3t,log2log2t,代入后原不等式简化为(3t)x2tx2t>0,它对一切实数x恒成立,所以:,解得 t<0即log<00<<1,解得0<a<1。【注】应用局部换元法,起到了化繁为简、化难为易的作用。为什么会想到换元及如何设元,关键是发现已知不等式中log、 log、log三项之间的联系。在解决不等式恒成立问题时,使用了“判别式法”。另外,本题还要求对数运算十分熟练。一般地,解指数与对数的不等式、方程,有可能使用局部换元法,换元时也可能要对所给的已知条件进行适当变形,发现它们的联系而实施换元,这是我们思考解法时要注意的一点。例5. 已知,且 (式),求的值。【解】 设k,则sinkx,cosky,且sincosk(x+y)1,代入式得: 即:设t,则t , 解得:t3或 ±或±【另解】 由tg,将等式两边同时除以,再表示成含tg的式子:1tgtg,设tgt,则3t10t30,t3或, 解得±或±。【注】 第一种解法由而进行等量代换,进行换元,减少了变量的个数。第二种解法将已知变形为,不难发现进行结果为tg,再进行换元和变形。两种解法要求代数变形比较熟练。在解高次方程时,都使用了换元法使方程次数降低。例6. 实数x、y满足1,若xyk>0恒成立,求k的范围。【分析】由已知条件1,可以发现它与ab1有相似之处,于是实施三角换元。【解】由1,设cos,sin,即: 代入不等式xyk>0得:3cos4sink>0,即k<3cos4sin5sin(+) 所以k<-5时不等式恒成立。【注】本题进行三角换元,将代数问题(或者是解析几何问题)化为了含参三角不等式恒成立的问题,再运用“分离参数法”转化为三角函数的值域问题,从而求出参数范围。一般地,在遇到与圆、椭圆、双曲线的方程相似的代数式时,或者在解决圆、椭圆、双曲线等有关问题时,经常使用“三角换元法”。 y x xyk>0 k 平面区域本题另一种解题思路是使用数形结合法的思想方法:在平面直角坐标系,不等式axbyc>0 (a>0)所表示的区域为直线axbyc0所分平面成两部分中含x轴正方向的一部分。此题不等式恒成立问题化为图形问题:椭圆上的点始终位于平面上xyk>0的区域。即当直线xyk0在与椭圆下部相切的切线之下时。当直线与椭圆相切时,方程组有相等的一组实数解,消元后由0可求得k3,所以k<-3时原不等式恒成立。、巩固性题组:1. 已知f(x)lgx (x>0),则f(4)的值为_。A. 2lg2 B. lg2 C. lg2 D. lg42. 函数y(x1)2的单调增区间是_。A. -2,+) B. -1,+) D. (-,+) C. (-,-13. 设等差数列a的公差d,且S145,则aaaa的值为_。A. 85 B. 72.5 C. 60 D. 52.54. 已知x4y4x,则xy的范围是_。5. 已知a0,b0,ab1,则的范围是_。6. 不等式>ax的解集是(4,b),则a_,b_。7. 函数y2x的值域是_。8. 在等比数列a中,aaa2,aaa12,求aaa。 y D C A B O x9. 实数m在什么范围内取值,对任意实数x,不等式sinx2mcosx4m1<0恒成立。10. 已知矩形ABCD,顶点C(4,4),A点在曲线xy2 (x>0,y>0)上移动,且AB、AD始终平行x轴、y轴,求矩形ABCD的最小面积 参数法参数法是指在解题过程中,通过适当引入一些与题目研究的数学对象发生联系的新变量(参数),以此作为媒介,再进行分析和综合,从而解决问题。直线与二次曲线的参数方程都是用参数法解题的例证。换元法也是引入参数的典型例子。辨证唯物论肯定了事物之间的联系是无穷的,联系的方式是丰富多采的,科学的任务就是要揭示事物之间的内在联系,从而发现事物的变化规律。参数的作用就是刻画事物的变化状态,揭示变化因素之间的内在联系。参数体现了近代数学中运动与变化的思想,其观点已经渗透到中学数学的各个分支。运用参数法解题已经比较普遍。参数法解题的关键是恰到好处地引进参数,沟通已知和未知之间的内在联系,利用参数提供的信息,顺利地解答问题。、再现性题组:1. 设235>1,则2x、3y、5z从小到大排列是_。2. (理)直线上与点A(-2,3)的距离等于的点的坐标是_。 (文)若k<1,则圆锥曲线xky1的离心率是_。3. 点Z的虚轴上移动,则复数Cz12在复平面上对应的轨迹图像为_。4. 三棱锥的三个侧面互相垂直,它们的面积分别是6、4、3,则其体积为_。5. 设函数f(x)对任意的x、yR,都有f(xy)f(x)f(y),且当x>0时,f(x)<0,则f(x)的R上是_函数。(填“增”或“减”)6. 椭圆1上的点到直线x2y0的最大距离是_。 A. 3 B. C. D. 2【简解】1小题:设235t,分别取2、3、5为底的对数,解出x、y、z,再用“比较法”比较2x、3y、5z,得出3y<2x<5z;2小题:(理)A(-2,3)为t0时,所求点为t±时,即(-4,5)或(0,1);(文)已知曲线为椭圆,a1,c,所以e;3小题:设zb,则C1b2,所以图像为:从(1,2)出发平行于x轴向右的射线;4小题:设三条侧棱x、y、z,则xy6、yz4、xz3,所以xyz24,体积为4。5小题:f(0)0,f(0)f(x)f(-x),所以f(x)是奇函数,答案:减;6小题:设x4sin、y2cos,再求d的最大值,选C。、示范性题组:例1. 实数a、b、c满足abc1,求abc的最小值。【分析】由abc1 想到“均值换元法”,于是引入了新的参数,即设at,bt,ct,代入abc可求。【解】由abc1,设at,bt,ct,其中ttt0, abc(t)(t)(t)(ttt)tttttt所以abc的最小值是。【注】由“均值换元法”引入了三个参数,却将代数式的研究进行了简化,是本题此种解法的一个技巧。本题另一种解题思路是利用均值不等式和“配方法”进行求解,解法是:abc(abc)2(abbcac)12(abc),即abc。两种解法都要求代数变形的技巧性强,多次练习,可以提高我们的代数变形能力。例2. 椭圆1上有两点P、Q,O为原点。连OP、OQ,若k·k , 求证:|OP|OQ|等于定值; .求线段PQ中点M的轨迹方程。【分析】 由“换元法”引入新的参数,即设(椭圆参数方程),参数、为P、Q两点,先计算k·k得出一个结论,再计算|OP|OQ|,并运用“参数法”求中点M的坐标,消参而得。【解】由1,设,P(4cos,2sin),Q(4cos,2sin),则k·k,整理得到:cos cossin sin0,即cos()0。 |OP|OQ|16cos4sin16cos4sin812(coscos)206(cos2cos2)2012cos()cos()20,即|OP|OQ|等于定值20。由中点坐标公式得到线段PQ的中点M的坐标为,所以有()y22(cos cossin sin)2,即所求线段PQ的中点M的轨迹方程为1。【注】由椭圆方程,联想到ab1,于是进行“三角换元”,通过换元引入新的参数,转化成为三角问题进行研究。本题还要求能够熟练使用三角公式和“平方法”,在由中点坐标公式求出M点的坐标后,将所得方程组稍作变形,再平方相加,即(cos cos)(sinsin),这是求点M轨迹方程“消参法”的关键一步。一般地,求动点的轨迹方程运用“参数法”时,我们可以将点的x、y坐标分别表示成为一个或几个参数的函数,再运用“消去法”消去所含的参数,即得到了所求的轨迹方程。本题的第一问,另一种思路是设直线斜率k,解出P、Q两点坐标再求:设直线OP的斜率k,则OQ的斜率为,由椭圆与直线OP、OQ相交于PQ两点有:,消y得(14k)x16,即|x|;,消y得(1)x16,即|x|;所以|OP|OQ|()()20。即|OP|OQ|等于定值20。在此解法中,利用了直线上两点之间的距离公式|AB|xx|求|OP|和|OQ|的长。 S E D C O F A B例3.已知正四棱锥SABCD的侧面与底面的夹角为,相邻两侧面的夹角为,求证:cos=-cos。【分析】要证明cos=-cos,考虑求出、的余弦,则在和所在的三角形中利用有关定理求解。【解】连AC、BD交于O,连SO;取BC中点F,连SF、OF;作BESC于E,连DE。则SFO,DEB。 设BCa (为参数), 则SF, SC又 BE在DEB中,由余弦定理有:coscos。所以coscos。【注】 设参数a而不求参数a,只是利用其作为中间变量辅助计算,这也是在参数法中参数可以起的一个作用,即设参数辅助解决有关问题。、巩固性题组:1. 已知复数z满足|z|1,则复数z2在复平面上表示的点的轨迹是_。2. 函数yx2的值域是_。3. 抛物线yx10xcos253sin25sin与x轴两个交点距离的最大值为_A. 5 B. 10 C. 2 D. 34. 过点M(0,1)作直线L,使它与两已知直线L:x3y100及L:2xy80所截得的线段被点P平分,求直线L方程。5. 求半径为R的球的内接圆锥的最大体积。6. f(x)(1cosx)sinx,x0,2),求使f(x)1的实数a的取值范围。7. 若关于x的方程2xxlglg()lg0有模为1的虚根,求实数a的值及方程的根。8. 给定的抛物线y2px (p>0),证明:在x轴的正向上一定存在一点M,使得对于抛物线的任意一条过点M的弦PQ,有为定值。 数学归纳法归纳是一种有特殊事例导出一般原理的思维方法。归纳推理分完全归纳推理与不完全归纳推理两种。不完全归纳推理只根据一类事物中的部分对象具有的共同性质,推断该类事物全体都具有的性质,这种推理方法,在数学推理论证中是不允许的。完全归纳推理是在考察了一类事物的全部对象后归纳得出结论来。数学归纳法是用来证明某些与自然数有关的数学命题的一种推理方法,在解数学题中有着广泛的应用。它是一个递推的数学论证方法,论证的第一步是证明命题在n1(或n)时成立,这是递推的基础;第二步是假设在nk时命题成立,再证明nk1时命题也成立,这是无限递推下去的理论依据,它判断命题的正确性能否由特殊推广到一般,实际上它使命题的正确性突破了有限,达到无限。这两个步骤密切相关,缺一不可,完成了这两步,就可以断定“对任何自然数(或nn且nN)结论都正确”。由这两步可以看出,数学归纳法是由递推实现归纳的,属于完全归纳。运用数学归纳法证明问题时,关键是nk1时命题成立的推证,此步证明要具有目标意识,注意与最终要达到的解题目标进行分析比较,以此确定和调控解题的方向,使差异逐步减小,最终实现目标完成解题。运用数学归纳法,可以证明下列问题:与自然数n有关的恒等式、代数不等式、三角不等式、数列问题、几何问题、整除性问题等等。、再现性题组:1. 用数学归纳法证明(n1)(n2)(nn)2·1·2(2n1) (nN),从“k到k1”,左端需乘的代数式为_。 A. 2k1 B. 2(2k1) C. D. 2. 用数学归纳法证明1<n (n>1)时,由nk (k>1)不等式成立,推证nk1时,左边应增加的代数式的个数是_。 A. 2 B. 21 C. 2 D. 213. 某个命题与自然数n有关,若nk (kN)时该命题成立,那么可推得nk1时该命题也成立。现已知当n5时该命题不成立,那么可推得_。 (94年上海高考) A.当n6时该命题不成立 B.当n6时该命题成立 C.当n4时该命题不成立 D.当n4时该命题成立4. 数列a中,已知a1,当n2时aa2n1,依次计算a、a、a后,猜想a的表达式是_。 A. 3n2 B. n C. 3 D. 4n35. 用数学归纳法证明35 (nN)能被14整除,当nk1时对于式子35应变形为_。6. 设k棱柱有f(k)个对角面,则k1棱柱对角面的个数为f(k+1)f(k)_。【简解】1小题:nk时,左端的代数式是(k1)(k2)(kk),nk1时,左端的代数式是(k2)(k3)(2k1)(2k2),所以应乘的代数式为,选B;2小题:(21)(21)2,选C;3小题:原命题与逆否命题等价,若nk1时命题不成立,则nk命题不成立,选C。4小题:计算出a1、a4、a9、a16再猜想a,选B;5小题:答案(35)35(53);6小题:答案k1。、示范性题组:已知数列,得,。S为其前n项和,求S、S、S、S,推测S公式,并用数学归纳法证明。 (93年全国理)【解】 计算得S,S,S,S , 猜测S (nN)。当n1时,等式显然成立;假设当nk时等式成立,即:S,当nk1时,SS由此可知,当nk1时等式也成立。综上所述,等式对任何nN都成立。【注】 把要证的等式S作为目标,先通分使分母含有(2k3),再考虑要约分,而将分子变形,并注意约分后得到(2k3)1。这样证题过程中简洁一些,有效地确定了证题的方向。本题的思路是从试验、观察出发,用不完全归纳法作出归纳猜想,再用数学归纳法进行严格证明,这是关于探索性问题的常见证法,在数列问题中经常见到。 假如猜想后不用数学归纳法证明,结论不一定正确,即使正确,解答过程也不严密。必须要进行三步:试值 猜想 证明。【另解】 用裂项相消法求和:由a得,S(1)()1此种解法与用试值猜想证明相比,过程十分简单,但要求发现的裂项公式。可以说,用试值猜想证明三步解题,具有一般性。例2. 设a (nN),证明:n(n1)<a< (n1) 。【分析】与自然数n有关,考虑用数学归纳法证明。n1时容易证得,nk1时,因为aa,所以在假设nk成立得到的不等式中同时加上,再与目标比较而进行适当的放缩求解。【解】 当n1时,a,n(n+1), (n+1)2 , n1时不等式成立。假设当nk时不等式成立,即:k(k1)<a< (k1) ,当nk1时,k(k1)<a<(k1),k(k1)>k(k1)(k1)(k1)(k3)>(k1)(k2),(k1)(k1)<(k1)(k)(k2),所以(k1)(k2) <a<(k2),即nk1时不等式也成立。综上所述,对所有的nN,不等式n(n1)<a<(n1)恒成立。【注】 用数学归纳法解决与自然数有关的不等式问题,注意适当选用放缩法。本题中分别将缩小成(k1)、将放大成(k)的两步放缩是证nk1时不等式成立的关键。为什么这样放缩,而不放大成(k2),这是与目标比较后的要求,也是遵循放缩要适当的原则。本题另一种解题思路是直接采用放缩法进行证明。主要是抓住对的分析,注意与目标比较后,进行适当的放大和缩小。解法如下:由>n可得,a>123nn(n1);由<n可得,a<123n×nn(n1)n(n2n)<(n1)。所以n(n1)<a<(n1)。例3. 设数列a的前n项和为S,若对于所有的自然数n,都有S,证明a是等差数列。 (94年全国文)【分析】 要证明a是等差数列,可以证明其通项符合等差数列的通项公式的形式,即证:aa(n1)d 。命题与n有关,考虑是否可以用数学归纳法进行证明。【解】 设aad,猜测aa(n1)d当n1时,aa, 当n1时猜测正确。当n2时,a(21)dada, 当n2时猜测正确。假设当nk(k2)时,猜测正确,即:aa(k1)d ,当nk1时,aSS,将aa(k1)d代入上式, 得到2a(k1)(aa)2kak(k1)d,整理得(k1)a(k1)ak(k1)d,因为k2,所以aakd,即nk1时猜测正确。综上所述,对所有的自然数n,都有aa(n1)d,从而a是等差数列。【注】 将证明等差数列的问题转化成证明数学恒等式关于自然数n成立的问题。在证明过程中a的得出是本题解答的关键,利用了已知的等式S、数列中通项与前n项和的关系aSS建立含a的方程,代入假设成立的式子aa(k1)d解出来a。另外本题注意的一点是不能忽视验证n1、n2的正确性,用数学归纳法证明时递推的基础是n2时等式成立,因为由(k1)a(k1)ak(k1)d得到aakd的条件是k2。【另解】 可证a a a a对于任意n2都成立:当n2时,aSS;同理有aSS;从而aan(aa),整理得a a a a,从而a是等差数列。一般地,在数列问题中含有a与S时,我们可以考虑运用aSS的关系,并注意只对n2时关系成立,象已知数列的S求a一类型题应用此关系最多。、巩固性题组:用数学归纳法证明:61 (nN)能被7整除。用数学归纳法证明: 1×42×73×10n(3n1)n(n1) (nN)。nN,试比较2与(n1)的大小,并用证明你的结论。用数学归纳法证明等式:cos·cos·cos··cos (81年全国高考)用数学归纳法证明: |sinnx|n|sinx| (nN)。 (85年广东高考)6. 数列a的通项公式a (nN),设f(n)(1a)(1a)(1a),试求f(1)、f(2)、f(3)的值,推测出f(n)的值,并用数学归纳法加以证明。已知数列a满足a1,aacosxcos(n1)x, (xk,n2且nN)。 求a和a; .猜测a,并用数学归纳法证明你的猜测。8. 设f(logx) , .求f(x)的定义域; .在yf(x)的图像上是否存在两个不同点,使经过这两点的直线与x轴平行?证明你的结论。 .求证:f(n)>n (n>1且nN) 待定系数法要确定变量间的函数关系,设出某些未知系数,然后根据所给条件来确定这些未知系数的方法叫待定系数法,其理论依据是多项式恒等,也就是利用了多项式f(x)g(x)的充要条件是:对于一个任意的a值,都有f(a)g(a);或者两个多项式各同类项的系数对应相等。待定系数法解题的关键是依据已知,正确列出等式或方程。使用待定系数法,就是把具有某种确定形式的数学问题,通过引入一些待定的系数,转化为方程组来解决,要判断一个问题是否用待定系数法求解,主要是看所求解的数学问题是否具有某种确定的数学表达式,如果具有,就可以用待定系数法求解。例如分解因式、拆分分式、数列求和、求函数式、求复数、解析几何中求曲线方程等,这些问题都具有确定的数学表达形式,所以都可以用待定系数法求解。使用待定系数法,它解题的基本步骤是:第一步,确定所求问题含有待定系数的解析式;第二步,根据恒等的条件,列出一组含待定系数的方程;第三步,解方程组或者消去待定系数,从而使问题得到解决。如何列出一组含待定系数的方程,主要从以下几方面着手分析: 利用对应系数相等列方程; 由恒等的概念用数值代入法列方程; 利用定义本身的属性列方程; 利用几何条件列方程。比如在求圆锥曲线的方程时,我们可以用待定系数法求方程:首先设所求方程的形式,其中含有待定的系数;再把几何条件转化为含所求方程未知系数的方程或方程组;最后解所得的方程或方程组求出未知的系数,并把求出的系数代入已经明确的方程形式,得到所求圆锥曲线的方程。、再现性题组:1. 设f(x)m,f(x)的反函数f(x)nx5,那么m、n的值依次为_。A. , 2 B. , 2 C. , 2 D. ,22. 二次不等式axbx2>0的解集是(,),则ab的值是_。A. 10 B. 10 C. 14 D. 143. 在(1x)(1x)的展开式中,x的系数是_。A. 297 B.252 C. 297 D. 2074. 函数yabcos3x (b<0)的最大值为,最小值为,则y4asin3bx的最小正周期是_。5. 与直线L:2x3y50平行且过点A(1,-4)的直线L的方程是_。6. 与双曲线x1有共同的渐近线,且过点(2,2)的双曲线的方程是_。【简解】1小题:由f(x)m求出f(x)2x2m,比较系数易求,选C;2小题:由不等式解集(,),可知、是方程axbx20的两根,代入两根,列出关于系数a、b的方程组,易求得ab,选D;3小题:分析x的系数由C与(1)C两项组成,相加后得x的系数,选D;4小题:由已知最大值和最小值列出a、b的方程组求出a、b的值,再代入求得答案;5小题:设直线L方程2x3yc0,点A(1,-4)代入求得C10,即得2x3y100;6小题:设双曲线方程x,点(2,2)代入求得3,即得方程1。、示范性题组:例1. 已知函数y的最大值为7,最小值为1,求此函数式。【分析】求函数的表达式,实际上就是确定系数m、n的值;已知最大值、最小值实际是就是已知函数的值域,对分子或分母为二次函数的分式函数的值域易联想到“判别式法”。【解】 函数式变形为: (ym)x4x(yn)0, xR, 由已知得ym0 (4)4(ym)(yn)0 即: y(mn)y(mn12)0 不等式的解集为(-1,7),则1、7是方程y(mn)y(mn12)0的两根,代入两根得: 解得:或 y或者y此题也可由解集(-1,7)而设(y1)(y7)0,即y6y70,然后与不等式比较系数而得:,解出m、n而求得函数式y。【注】 在所求函数式中有两个系数m、n需要确定,首先用“判别式法”处理函数值域问题,得到了含参数m、n的关于y的一元二次不等式,且知道了它的解集,求参数m、n。两种方法可以求解,一是视为方程两根,代入后列出m、n的方程求解;二是由已知解集写出不等式,比较含参数的不等式而列出m、n的方程组求解。本题要求对一元二次不等式的解集概念理解透彻,也要求理解求函数值域的“判别式法”:将y视为参数,函数式化成含参数y的关于x的一元二次方程,可知其有解,利用0,建立了关于参数y的不等式,解出y的范围就是值域,使用“判别式法”的关键是否可以将函数化成一个一元二次方程。例2. 设椭圆中心在(2,-1),它的一个焦点与短轴两端连线互相垂直,且此焦点与长轴较近的端点距离是,求椭圆的方程。 y B x A F O F A B【分析】求椭圆方程,根据所给条件,确定几何数据a、b、c之值,问题就全部解决了。设a、b、c后,由已知垂直关系而联想到勾股定理建立一个方程,再将焦点与长轴较近端点的距离转化为ac的值后列出第二个方程。【解】 设椭圆长轴2a、短轴2b、焦距2c,则|BF|a 解得: 所求椭圆方程是:1也可有垂直关系推证出等腰RtBBF后,由其性质推证出等腰RtBOF,再进行如下列式: ,更容易求出a、b的值。【注】 圆锥曲线中,参数(a、b、c、e、p)的确定