欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    2022年高中立体几何高考知识点 .pdf

    • 资源ID:38577987       资源大小:1.34MB        全文页数:46页
    • 资源格式: PDF        下载积分:4.3金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要4.3金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2022年高中立体几何高考知识点 .pdf

    学习必备欢迎下载立体几何知识点总结1. 空间多边形 不在同一平面内的若干线段首尾相接所成的图形叫做空间折线.若空间折线的最后一条线段的尾端与最初一条线段的首端重合,则叫做封闭的空间折线. 若封闭的空间折线各线段彼此不相交,则叫做这空间多边形平面,平面是一个不定义的概念,几何里的平面是无限伸展的 . 平面通常用一个平行四边形来表示. 平面常用希腊字母、 或拉丁字母M 、N、P 来表示,也可用表示平行四边形的两个相对顶点字母表示,如平面 AC. 在立体几何中,大写字母A,B,C,表示点,小写字母,a,b,c,l,m,n,表示直线,且把直线和平面看成点的集合,因而能借用集合论中的符号表示它们之间的关系,例如:a)A l 点 A在直线 l 上; A点 A不在平面 内;b)l直线 l 在平面 内;c)a直线 a 不在平面 内;d)l m=A 直线 l 与直线 m相交于 A点;e)l=A 平面 与直线 l 交于 A点;f)=l 平面 与平面 相交于直线l. 2. 平面的基本性质公理 1 如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内. 公理 2 如果两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线. 公理 3 经过不在同一直线上的三个点,有且只有一个平面. 根据上面的公理,可得以下推论. 推论 1 经过一条直线和这条直线外一点,有且只有一个平面. 推论 2 经过两条相交直线,有且只有一个平面. 推论 3 经过两条平行直线,有且只有一个平面. 3. 证题方法4. 空间线面的位置关系共面平行没有公共点(1) 直线与直线相交有且只有一个公共点异面 ( 既不平行,又不相交) 直线在平面内有无数个公共点(2) 直线和平面直线不在平面内平行没有公共点 (直线在平面外 ) 相交有且只有一公共点(3) 平面与平面相交有一条公共直线( 无数个公共点) 平行没有公共点证题方法间接证法直接证法反证法同一法精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 1 页,共 46 页学习必备欢迎下载5. 异面直线的判定证明两条直线是异面直线通常采用反证法. 有时也可用定理“平面内一点与平面外一点的连线,与平面内不经过该点的直线是异面直线”. 6. 线面平行与垂直的判定 (1) 两直线平行的判定定义:在同一个平面内,且没有公共点的两条直线平行. 如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行,即若 a,a,=b, 则 ab. 平行于同一直线的两直线平行,即若ab,b c, 则 ac. 垂直于同一平面的两直线平行,即若a ,b ,则 ab 两平行平面与同一个平面相交,那么两条交线平行,即若, , =b, 则 ab 如果一条直线和两个相交平面都平行,那么这条直线与这两个平面的交线平行,即若=b,a ,a ,则 ab. (2) 两直线垂直的判定定义:若两直线成90角,则这两直线互相垂直. 一条直线与两条平行直线中的一条垂直,也必与另一条垂直. 即若 bc,a b, 则 ac 一条直线垂直于一个平面,则垂直于这个平面内的任意一条直线. 即若 a,b,a b.三垂线定理和它的逆定理:在平面内的一条直线,若和这个平面的一条斜线的射影垂直,则它也和这条斜线垂直. 如果一条直线与一个平面平行,那么这条直线与这个平面的垂线垂直. 即若 a,b , 则 ab. 三个两两垂直的平面的交线两两垂直,即若 , , , 且=a, =b, =c, 则 ab,bc,c a. (3) 直线与平面平行的判定定义:若一条直线和平面没有公共点,则这直线与这个平面平行. 如果平面外一条直线和这个平面内的一条直线平行,则这条直线与这个平面平行. 即若 a,b,ab, 则 a. 两个平面平行,其中一个平面内的直线平行于另一个平面,即若 ,l,则 l . 如果一个平面和平面外的一条直线都垂直于同一平面,那么这条直线和这个平面平行. 即若 ,l ,l,则 l . 在一个平面同侧的两个点,如果它们与这个平面的距离相等,那么过这两个点的直线与这个平面平行,即若 A,B ,A、 B在 同侧,且A、B到等距,则AB . 两个平行平面外的一条直线与其中一个平面平行,也与另一个平面平行,即若,a,a,a,则. 如果一条直线与一个平面垂直,则平面外与这条直线垂直的直线与该平面平行,即若a,b,ba,则 b. 如果两条平行直线中的一条平行于一个平面,那么另一条也平行于这个平面( 或在这个平面内) ,即若a b,a ,b ( 或 b) (4) 直线与平面垂直的判定定义:若一条直线和一个平面内的任何一条直线垂直,则这条直线和这个平面垂直. 如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面. 即若m,n ,m 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 2 页,共 46 页学习必备欢迎下载n=B,l m,l n, 则 l . 如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于同一平面.即若 l a,a , 则 l . 一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面,即若,l ,则 l . 如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面,即若,a = ,l ,l a, 则 l . 如果两个相交平面都垂直于第三个平面,则它们的交线也垂直于第三个平面,即若 , , 且 a=,则 a. (5) 两平面平行的判定定义:如果两个平面没有公共点,那么这两个平面平行,即无公共点. 如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行,即若a,b,ab=P,a ,b,则 . 垂直于同一直线的两平面平行. 即若 a, a, 则. 平行于同一平面的两平面平行. 即若 , , 则. 一个平面内的两条直线分别平行于另一平面内的两条相交直线,则这两个平面平行,即若a,b,c,d,ab=P,ac,b d, 则. (6) 两平面垂直的判定定义:两个平面相交,如果所成的二面角是直二面角,那么这两个平面互相垂直,即二面角 a=90. 如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直,即若l ,l,则 . 一个平面垂直于两个平行平面中的一个,也垂直于另一个. 即若 , ,则 . 7. 直线在平面内的判定(1) 利用公理 1:一直线上不重合的两点在平面内,则这条直线在平面内. (2) 若两个平面互相垂直,则经过第一个平面内的一点垂直于第二个平面的直线在第一个平面内,即若,A,AB ,则 AB. (3) 过一点和一条已知直线垂直的所有直线,都在过此点而垂直于已知直线的平面内,即若Aa,a b,A,b,则 a. (4) 过平面外一点和该平面平行的直线,都在过此点而与该平面平行的平面内,即若P,P, ,P a,a ,则 a. (5) 如果一条直线与一个平面平行,那么过这个平面内一点与这条直线平行的直线必在这个平面内,即若a,A,Ab,b a, 则 b. 8. 存在性和唯一性定理(1) 过直线外一点与这条直线平行的直线有且只有一条;(2) 过一点与已知平面垂直的直线有且只有一条;(3) 过平面外一点与这个平面平行的平面有且只有一个;(4) 与两条异面直线都垂直相交的直线有且只有一条;(5) 过一点与已知直线垂直的平面有且只有一个;(6) 过平面的一条斜线且与该平面垂直的平面有且只有一个;(7) 过两条异面直线中的一条而与另一条平行的平面有且只有一个;(8) 过两条互相垂直的异面直线中的一条而与另一条垂直的平面有且只有一个. 9. 射影及有关性质精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 3 页,共 46 页学习必备欢迎下载(1) 点在平面上的射影自一点向平面引垂线,垂足叫做这点在这个平面上的射影,点的射影还是点. (2) 直线在平面上的射影自直线上的两个点向平面引垂线,过两垂足的直线叫做直线在这平面上的射影. 和射影面垂直的直线的射影是一个点;不与射影面垂直的直线的射影是一条直线. (3) 图形在平面上的射影一个平面图形上所有的点在一个平面上的射影的集合叫做这个平面图形在该平面上的射影. 当图形所在平面与射影面垂直时,射影是一条线段;当图形所在平面不与射影面垂直时,射影仍是一个图形. (4) 射影的有关性质从平面外一点向这个平面所引的垂线段和斜线段中:(i)射影相等的两条斜线段相等,射影较长的斜线段也较长;(ii)相等的斜线段的射影相等,较长的斜线段的射影也较长;(iii)垂线段比任何一条斜线段都短. 10. 空间中的各种角等角定理及其推论定理若一个角的两边和另一个角的两边分别平行,并且方向相同,则这两个角相等. 推论若两条相交直线和另两条相交直线分别平行,则这两组直线所成的锐角(或直角 ) 相等 . 异面直线所成的角(1) 定义: a、b是两条异面直线,经过空间任意一点O ,分别引直线a a,b b, 则 a和 b所成的锐角( 或直角) 叫做异面直线a 和 b 所成的角 . (2) 取值范围: 0 90. (3) 求解方法根据定义,通过平移,找到异面直线所成的角;解含有 的三角形,求出角的大小 . 11. 直线和平面所成的角(1) 定义和平面所成的角有三种:(i)垂线面所成的角的一条斜线和它在平面上的射影所成的锐角,叫做这条直线和这个平面所成的角. (ii)垂线与平面所成的角直线垂直于平面,则它们所成的角是直角. (iii)一条直线和平面平行,或在平面内,则它们所成的角是0的角 . (2) 取值范围 0 90(3) 求解方法作出斜线在平面上的射影,找到斜线与平面所成的角. 解含 的三角形,求出其大小. 最小角定理斜线和平面所成的角,是这条斜线和平面内经过斜足的直线所成的一切角中最小的角,亦可说,斜线和平面所成的角不大于斜线与平面内任何直线所成的角. 12. 二面角及二面角的平面角(1) 半平面直线把平面分成两个部分,每一部分都叫做半平面. (2) 二面角条直线出发的两个半平面所组成的图形叫做二面角. 这条直线叫做二面角的棱,这两个平面叫做二面角的面,即二面角由半平面一棱一半平面组成. 若两个平面相交,则以两个平面的交线为棱形成四个二面角. 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 4 页,共 46 页学习必备欢迎下载二面角的大小用它的平面角来度量,通常认为二面角的平面角的取值范围是0 180(3) 二面角的平面角以二面角棱上任意一点为端点,分别在两个面内作垂直于棱的射线,这两条射线所组成的角叫做二面角的平面角. 如图, PCD是二面角 -AB- 的平面角 . 平面角 PCD的大小与顶点C在棱 AB上的位置无关. 二面角的平面角具有下列性质:(i)二面角的棱垂直于它的平面角所在的平面,即AB 平面 PCD. (ii)从二面角的平面角的一边上任意一点( 异于角的顶点)作另一面的垂线,垂足必在平面角的另一边( 或其反向延长线 )上 . (iii)二面角的平面角所在的平面与二面角的两个面都垂直,即平面PCD ,平面 PCD . 找 ( 或作 ) 二面角的平面角的主要方法. (i)定义法(ii)垂面法(iii)三垂线法( ) 根据特殊图形的性质(4) 求二面角大小的常见方法先找 ( 或作 ) 出二面角的平面角,再通过解三角形求得的值 . 利用面积射影定理S=Scos其中 S为二面角一个面内平面图形的面积,S是这个平面图形在另一个面上的射影图形的面积, 为二面角的大小. 利用异面直线上两点间的距离公式求二面角的大小. 13. 空间的各种距离点到平面的距离(1) 定义面外一点引一个平面的垂线,这个点和垂足间的距离叫做这个点到这个平面的距离. (2) 求点面距离常用的方法:1) 直接利用定义求找到 ( 或作出 ) 表示距离的线段;抓住线段 ( 所求距离 ) 所在三角形解之. 2) 利用两平面互相垂直的性质.即如果已知点在已知平面的垂面上,则已知点到两平面交线的距离就是所求的点面距离 . 3) 体积法其步骤是:在平面内选取适当三点,和已知点构成三棱锥;求出此三棱锥的体积V 和所取三点构成三角形的面积S ;由V=31Sh,求出h 即为所求 . 这种方法的优点是不必作出垂线即可求点面距离. 难点在于如何构造合适的三棱锥以便于计算. 4) 转化法将点到平面的距离转化为( 平行 ) 直线与平面的距离来求. 14. 直线和平面的距离(1) 定义一条直线和一个平面平行,这条直线上任意一点到平面的距离,叫做这条直线和平面的距离. (2) 求线面距离常用的方法直接利用定义求证( 或连或作 ) 某线段为距离,然后通过解三角形计算之. 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 5 页,共 46 页学习必备欢迎下载将线面距离转化为点面距离,然后运用解三角形或体积法求解之. 作辅助垂直平面,把求线面距离转化为求点线距离. 15. 平行平面的距离(1) 定义个平行平面同时垂直的直线,叫做这两个平行平面的公垂线. 公垂线夹在两个平行平面间的部分,叫做这两个平行平面的公垂线段. 两个平行平面的公垂线段的长度叫做这两个平行平面的距离. (2) 求平行平面距离常用的方法直接利用定义求证( 或连或作 ) 某线段为距离,然后通过解三角形计算之. 把面面平行距离转化为线面平行距离,再转化为线线平行距离,最后转化为点线( 面 ) 距离, 通过解三角形或体积法求解之. 16. 异面直线的距离(1) 定义条异面直线都垂直相交的直线叫做两条异面直线的公垂线. 两条异面直线的公垂线在这两条异面直线间的线段的长度,叫做两条异面直线的距离. 任何两条确定的异面直线都存在唯一的公垂线段. (2) 求两条异面直线的距离常用的方法定义法题目所给的条件,找出( 或作出 ) 两条异面直线的公垂线段,再根据有关定理、性质求出公垂线段的长. 此法一般多用于两异面直线互相垂直的情形. 转化法为以下两种形式:线面距离面面距离等体积法最值法射影法公式法高中数学必修 2 知识点第一章空间几何体1.1 柱、锥、台、球的结构特征(略) 棱柱:棱锥:棱台:圆柱:圆锥:圆台:球:1.2 空间几何体的三视图和直观图1 三视图:正视图:从前往后侧视图:从左往右俯视图:从上往下2 画三视图的原则:长对齐、高对齐、宽相等3 直观图:斜二测画法4 斜二测画法的步骤:(1).平行于坐标轴的线依然平行于坐标轴;精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 6 页,共 46 页学习必备欢迎下载(2).平行于 y 轴的线长度变半,平行于x,z 轴的线长度不变;(3).画法要写好。5 用斜二测画法画出长方体的步骤: (1)画轴( 2)画底面( 3)画侧棱( 4)成图1.3 空间几何体的表面积与体积(一 )空间几何体的表面积1 棱柱、棱锥的表面积:各个面面积之和2 圆柱的表面积3 圆锥的表面积2Srlr4 圆台的表面积22SrlrRlR5 球的表面积24SR6 扇形的面积公式213602n RSlr扇形(其中l表示弧长,r表示半径)(二)空间几何体的体积1 柱体的体积VSh底2 锥体的体积13VSh底3 台体的体积1)3VSSSSh下下上上(4 球体的体积343VR第二章 直线与平面的位置关系2.1 空间点、直线、平面之间的位置关系2.1.1 1 平面含义:平面是无限延展的, 无大小,无厚薄。2 平面的画法及表示(1)平面的画法:水平放置的平面通常画成一个平行四边形,锐角画成450,且横边画成邻边的2 倍长(2)平面通常用希腊字母 、等表示,如平面 、平面 等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面AC 、平面 ABCD 等。3 三个公理:(1)公理 1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内符号表示为AlBllAB公理 1作用:判断直线是否在平面内(2)公理 2:过不在一条直线上的三点,有且只有一个平面。符号表示为: A、B、C三点不共线有且只有一个平面 ,使 A、B、C。公理 2作用:确定一个平面的依据。补充 3个推论:推论 1:经过一条直线与直线外一点,有且只有一个平面。推论 2:经过两条平行直线,有且只有一个平面。推论 3:经过两条相交直线,有且只有一个平面。(3)公理 3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。222rrlS精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 7 页,共 46 页学习必备欢迎下载符号表示为:,plpl且公理 3作用:判定两个平面是否相交的依据2.1.2 空间中直线与直线之间的位置关系1 空间的两条直线有如下三种关系:相交直线:同一平面内,有且只有一个公共点;平行直线:同一平面内,没有公共点;异面直线:不同在任何一个平面内,没有公共点。2 公理 4:平行于同一条直线的两条直线互相平行。符号表示为:设 a、b、c 是三条直线,/abaccb强调:公理 4 实质上是说平行具有传递性,在平面、空间这个性质都适用。公理 4 作用:判断空间两条直线平行的依据。3 等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补。定理的推论 :如果两条相交直线和另两条相交直线分别平行,那么这两条直线所成的锐角(或直角 )相等. 4 异面直线定理:连结平面内一点与平面外一点的直线,和这个平面内不经过此点的直线是异面直线符号表示:,ABlBlABl直线与直线 异面。5 注意点: 异面直线11ab与所成的角的大小只由它们的相互位置来确定,与选择的位置无关,为简便一般取在两直线中的一条上;两条异面直线所成的角: 000 ,90 当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作ab; 两条直线互相垂直,有共面垂直与异面垂直两种情形; 计算中,通常把两条异面直线所成的角转化为两条相交直线所成的角。2.1.3 2.1.4 空间中直线与平面、平面与平面之间的位置关系1、直线与平面有三种位置关系:(1)直线在平面内 有无数个公共点(2)直线与平面相交 有且只有一个公共点(3)直线在平面平行 没有公共点特别指出:直线与平面相交或平行的情况统称为直线在平面外,可用a来表示a a=A a2.2. 直线、平面平行的判定及其性质2.2.1 直线与平面平行的判定1、直线与平面平行的判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。简记为:线线平行,则线面平行。符号表示:/abaab共面直线精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 8 页,共 46 页学习必备欢迎下载2.2.2 平面与平面平行的判定1、两个平面平行的判定定理:一个平面内的两条交直线与另一个平面平行,则这两个平面平行。符号表示 :/ababAab简记为:线线平行,则面面平行。2、判断两平面平行的方法有三种:(1)用定义;(2)判定定理;(3)垂直于同一条直线的两个平面平行。符号表示为:,/aa2.2.3 2.2.4 直线与平面、平面与平面平行的性质1、定理:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。简记为:线面平行,则线线平行。符号表示:/aaabb作用:利用该定理可解决直线间的平行问题。2、定理:如果两个平面同时与第三个平面相交,那么它们的交线平行。符号表示:/aabb,简记为:面面平行,则线线平行作用:可以由平面与平面平行得出直线与直线平行3、两个平面平行具有如下的一些性质:如果两个平面平行,那么在一个平面内的所有直线都与另一个平面平行如果两个平行平面同时和第三个平面相交, 那么它们的交线平行 . 如果一条直线和两个平行平面中的一个相交,那么它也和另一个平面相交夹在两个平行平面间的所有平行线段相等2.3 直线、平面垂直的判定及其性质2.3.1直线与平面垂直的判定1、 定义: 如果直线l与平面 内的任意一条直线都垂直, 我们就说直线 l 与平面 互相垂直,记作l,直线l叫做平面 的垂线,平面 叫做直线l的垂面。直线与平面垂直时, 它们唯一公共点P,点 P叫做垂足。2、判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。符号表示:,la lb ababAl,简记为:线线垂直,则线面垂直。注意点: a) 定理中的“两条相交直线”这一条件不可忽视;b)定理体现了“直线与平面垂直”与“直线与直线垂直”互相转化的数学思想。3、补充性质:/ ,ab ab精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 9 页,共 46 页学习必备欢迎下载4、直线与平面所成的角的范围为:000 ,90 2.3.2平面与平面垂直的判定1、二面角的概念:表示从空间一直线出发的两个半平面所组成的图形A 梭 l B 2、二面角的记法:二面角-l- 或-AB-, 平面之间二面角范围是000 ,180 3、两个平面互相垂直的判定定理:一个平面过另一个平面的垂线,则这两个平面垂直。符号表示:,ll,简记为:线面垂直,则面面垂直。4、线面角的求法,在直线上任找一点作平面的垂线,则直线和射影所成的角就是了。2.3.3 2.3.4 直线与平面、平面与平面垂直的性质1、定理:垂直于同一个平面的两条直线平行。符号表示:,abab补充性质:(1),/abab,(2),/abab,(3),/aa,(4),/,aa2 性质定理:两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直。符号表示:,al aala,面面垂直,则线面垂直。本章知识结构框图第三章直线与方程3.1 直线的倾斜角和斜率3.1 倾斜角和斜率1、直线的倾斜角的概念:当直线l 与 x 轴相交时 , 取 x 轴作为基准 , x轴正向与直线 l 向上方向之间所成的角 叫做直线 l 的倾斜角 . 特别地 , 当直线 l 与 x 轴平行或重合时 , 规定= 0. 2、 倾斜角 的取值范围: 0180. 当直线 l 与 x 轴垂直时 , = 90. 3、直线的斜率 : 一条直线的倾斜角 ( 90) 的正切值叫做这条直线的斜率, 斜率常用小写字母k 表示, 也就是 k = tan当直线 l 与 x 轴平行或重合时 , =0, k = tan0=0; 当直线 l 与 x 轴垂直时 , = 90, k 不存在 . 由此可知 , 一条直线 l 的倾斜角 一定存在 , 但是斜率 k 不一定存在 . 平面(公理 1、公理 2、公理 3、公理 4)空间直线、平面的位置关系平面与平面的位置关系直线与平面的位置关系精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 10 页,共 46 页学习必备欢迎下载22122221PPxxyy4、 直线的斜率公式 : 给定两点 P1(x1,y1),P2(x2,y2),x1x2, 用两点的坐标来表示直线P1P2的斜率:斜率公式 : k=y2-y1/x2-x1 3.1.2两条直线的平行与垂直1、两条直线都有斜率而且不重合,如果它们平行,那么它们的斜率相等;反之,如果它们的斜率相等,那么它们平行,即注意: 上面的等价是在两条直线不重合且斜率存在的前提下才成立的,缺少这个前提,结论并不成立即如果 k1=k2, 那么一定有 L1L2 2、两条直线都有斜率,如果它们互相垂直, 那么它们的斜率互为负倒数;反之,如果它们的斜率互为负倒数,那么它们互相垂直,即3.2.1 直线的点斜式方程1、直线的 点斜式 方程:直线l经过点),(000yxP,且斜率为k)(00 xxkyy2、 、直线的 斜截式 方程:已知直线l的斜率为k,且与y轴的交点为),0(bbkxy3.2.2 直线的两点式方程1、直线的两点式方程:已知两点),(),(222211yxPxxP其中),(2121yyxxy-y1/y-y2=x-x1/x-x2 2、直线的截距式方程: 已知直线l与x轴的交点为 A)0,(a,与y轴的交点为 B),0(b,其中0,0 ba3.2.3 直线的一般式方程1、直线的一般式方程:关于yx,的二元一次方程0CByAx(A,B 不同时为 0)2、各种直线方程之间的互化。3.3 直线的交点坐标与距离公式3.3.1两直线的交点坐标1、给出例题:两直线交点坐标L1 :3x+4y-2=0 L1:2x+y +2=0 解:解方程组34202220 xyxy得 x=-2,y=2 所以 L1 与 L2 的交点坐标为 M(-2,2)3.3.2两点间距离两点间的距离公式3.3.3点到直线的距离公式1点到直线距离公式:点),(00yxP到直线0:CByAxl的距离为:2200BACByAxd2、两平行线间的距离公式:已知两条平行线直线1l和2l的一般式方程为1l:01CByAx,2l:02CByAx,则1l与2l的距离为2221BACCd精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 11 页,共 46 页学习必备欢迎下载第四章圆与方程4.1.1 圆的标准方程1、圆的标准方程:222()()xaybr圆心为 A(a,b),半径为 r 的圆的方程2、点00(,)Mxy与圆222()()xaybr的关系的判断方法:(1)2200()()xayb2r ,点在圆外(2)2200()()xayb=2r ,点在圆上(3)2200()()xayb2r ,点在圆内4.1.2 圆的一般方程1、圆的一般方程:022FEyDxyx2、圆的一般方程的特点:(1) x2 和 y2 的系数相同,不等于0没有 xy 这样的二次项 (2) 圆的一般方程中有三个特定的系数D、E、F,因之只要求出这三个系数,圆的方程就确定了(3) 、与圆的标准方程相比较,它是一种特殊的二元二次方程,代数特征明显,圆的标准方程则指出了圆心坐标与半径大小,几何特征较明显。4.2.1 圆与圆的位置关系1、用点到直线的距离来判断直线与圆的位置关系设直线l:0cbyax,圆C:022FEyDxyx,圆的半径为r,圆心)2,2(ED到直线的距离为d,则判别直线与圆的位置关系的依据有以下几点:(1)当rd时,直线l与圆C相离; (2)当rd时,直线l与圆C相切;(3)当rd时,直线l与圆C相交;4.2.2 圆与圆的位置关系两圆的位置关系设两圆的连心线长为l,则判别圆与圆的位置关系的依据有以下几点:(1)当21rrl时,圆1C与圆2C相离; (2)当21rrl时,圆1C与圆2C外切;(3)当|21rr21rrl时,圆1C与圆2C相交;(4)当|21rrl时,圆1C与圆2C内切; (5)当|21rrl时,圆1C与圆2C内含;4.2.3 直线与圆的方程的应用1、利用平面直角坐标系解决直线与圆的位置关系;2、过程与方法用坐标法解决几何问题的步骤:第一步:建立适当的平面直角坐标系,用坐标和方程表示问题中的几何元素,将平面几何精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 12 页,共 46 页学习必备欢迎下载问题转化为代数问题;第二步:通过代数运算,解决代数问题;第三步:将代数运算结果“翻译”成几何结论4.3.1空间直角坐标系1、点 M 对应着唯一确定的有序实数组),(zyx,x、 y 、z分别是 P、Q、R 在x、 y 、z轴上的坐标2、有序实数组),(zyx,对应着空间直角坐标系中的一点3、空间中任意点M 的坐标都可以用有序实数组),(zyx来表示,该数组叫做点M 在此空间直角坐标系中的坐标,记M),(zyx,x叫做点 M 的横坐标, y 叫做点M 的纵坐标,z叫做点 M 的竖坐标。4.3.2空间两点间的距离公式1、空间中任意一点),(1111zyxP到点),(2222zyxP之间的距离公式22122122121)()()(zzyyxxPPOyxMMRPQOyzxMP1P2NM1N2N1M2H精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 13 页,共 46 页学习必备欢迎下载立体几何 综合试题1 (本小题满分12 分)如图,在正三棱柱ABC A1B1C1中,各棱长都相等,D、E 分别为 AC1,BB1的中点。( 1)求证: DE平面 A1B1C1; (2)求二面角A1DE B1的大小。2 (本小题满分12 分)如图:已知直三棱柱ABC A1B1C1, ABAC ,F 为棱 BB1上一点, BFFB121,BFBC2a。(I)若 D 为 BC 的中点, E 为 AD 上不同于A、D 的任意一点,证明EFFC1;(II)试问:若AB 2a,在线段AD 上的E 点能否使EF 与平面BB1C1C 成 60角,为什么?证明你的结论3. (本小题满分12 分)如图,在底面是直角梯形的四棱锥PABCD中, AD BC , ABC 90,且ADCarcsin55,又 PA平面 ABCD ,AD 3AB 3PA3a。(I)求二面角PCDA 的正切值;(II)求点 A 到平面 PBC 的距离。PBCADABC1A1B1CED精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 14 页,共 46 页学习必备欢迎下载4.(本小题满分14 分)在直三棱柱ABC A1B1C1中, CA=CB=CC1=2, ACB=90 , E、F 分别是 BA、BC 的中点,G 是 AA1上一点,且AC1EG. ()确定点G 的位置;()求直线AC1与平面 EFG 所成角 的大小 . 5 (本小题满分12 分)已知四棱锥PABCD ,底面 ABCD 是菱形,PDDAB,60平面 ABCD ,PD=AD ,点 E 为 AB 中点,点F 为 PD 中点 . (1)证明平面PED平面 PAB;(2)求二面角PAB F 的平面角的余弦值6.在棱长为4 的正方体ABCD-A1B1C1D1中, O 是正方形A1B1C1D1的中心,点P 在棱 CC1上,且 CC1=4CP. ()求直线 AP 与平面 BCC1B1所成的角的大小(结果用反三角函数值表示);()设 O 点在平面D1AP 上的射影是H,求证: D1HAP;()求点 P 到平面 ABD1的距离 . B1 P A1 C1 D1 O H 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 15 页,共 46 页学习必备欢迎下载7、(本题满分14 分)如图,在四棱锥中,底面ABCD 是正方形,侧棱底面 ABCD ,E 是 PC 的中点,作交 PB 于点 F。(I)证明平面;(II) 证明平面 EFD;(III) 求二面角的大小。8 (本小题满分12 分)如图,在棱长为1 的正方体ABCD A1B1C1D1中,点 E 是棱 BC 的中点,点F 是棱CD 上的动点 . (I)试确定点F 的位置,使得D1E平面 AB1F;(II)当 D1E平面 AB1F 时,求二面角C1EF A 的大小(结果用反三角函数值表示). 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 16 页,共 46 页学习必备欢迎下载9、 (本小题满分12 分)如图,直四棱柱ABCD-A1B1C1D1的底面是梯形, AB CD, ADDC,CD=2,DD1=AB=1 ,P、Q 分别是 CC1、C1D1的中点。点P 到直线AD1的距离为223求证: AC 平面 BPQ 求二面角B-PQ-D 的大小10(本题满分13 分)ABDABDQ111精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 17 页,共 46 页学习必备欢迎下载已知长方体ABCD A1B1C1D1中, AB=BC=4 , AA1=8,E、F 分别为 AD 和 CC1的中点, O1为下底面正方形的中心。()证明: AF平面 FD1B1;()求异面直线EB 与 O1F 所成角的余弦值;立体几何1、 (1)取 A1C1中点 F,连结 B1F,DF, D1E 分别为 AC1和 BB1的中点, DFAA1,DF=(1/2)AA1,B1EAA1,B1E=(1/2)AA1, DFB1E,DF=B1E, DEB1F 为平行四边形, DEB1F,又 B1F 在平面 A1B1C1内, DE 不在平面A1B1C1, DE平面 A1B1C1(2)连结A1D,A1E,在正棱柱ABC A1B1C1中,因为平面A1B1C1平面ACC1A1,A1C1是平面 A1B1C1与平面 ACC1A1的交线,又因为B1F 在平面 A1B1C1内,且 B1FA1C1, ,所以B1F平面ACC1A1,又 DEB1F,所以DE平面 ACC1A1所以 FDA1为二面角A1DEB1的平面角。并且FDA1=( 1/2) A1DC1,设正三棱柱的棱长为1,因为 AA1C1=900,D是 AC1的中点,所以,45,90,22,220101111FDADCADADC即为所求的二面角的度数。2 (I)连结 DF,DC三棱柱ABC A1B1C1是直三棱柱,CC1平面 ABC ,平面BB1C1C平面 ABC AB AC, D 为 BC 的中点,AD BC, AD 平面 BB1C1C 3DF 为 EF 在平面 BB1C1C 上的射影,在 DFC1中, DF2BF2BD25a2,21DC21CCDC210a2,21FCB1F2211CB5a2,21DCDF221FC, DF FC1FC1EF 6(II )AD平面 BB1C1C, DFE 是 EF 与平面 BB1C1C 所成的角8在 EDF 中,若 EFD60,则 EDDFtg603a5a15,a15a3, E 在 DA 的延长线上,而不在线段AD 上11故线段 AD 上的 E 点不能使EF 与平面 BB1C1C 成 60角。123. 解: (1)在底面ABCD 内,过 A 作 AECD,垂足为E,连结 PE PBADHCEPA平面 ABCD ,由三垂线定理知:PECD PEA 是二面角 PCDA 的平面角2 分在Rt AED中,ADaADE355,arcsinAEADADEasin3 554 分ABDCA1D1C1B1EFO1H精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 18 页,共 46 页学习必备欢迎下载在Rt PAE中,tanPEAPAAE53二面角 PCDA 的正切值为536 分(II)在平面APB 中,过 A 作 AH PB,垂足为 HPA平面 ABCD , PA BC 又 AB BC, BC平面 PAB平面 PBC平面 PAB AH 平面 PBC 故 AH 的长即为点A 到平面 PBC 的距离10 分在等腰直角三角形PAB 中,AHa22,所以点 A 到平面 PBC 的距离为22a 12 4.(本小题满分14 分)解法一:()以 C 为原点,分别以CB、 CA、CC1为 x 轴、 y 轴、 z 轴建立空间直角坐标系,则F( 1,0,0) ,E(1,1, 0) ,A(0, 2,0) , C1(0, 0,2) ,)2, 2,0(1AC3 分设 G(0,2,h) ,则. 0,)., 1 , 1(11ACEGEGAChEG 10+1( 2)+2h=0. h=1,即 G 是 AA1的中点 . 6 分()设),(zyxm是平面 EFG 的法向量,则.,EGmFEm所以.0,0010zyxzyx平面 EFG 的一个法向量m=(1,0, 1) 10 分,212222|sin11ACmACm6, 即 AC1与平面 EFG 所成角为614 分解法二:()取AC 的中点 D,连结 DE、 DG,则 ED/BC 1 分BCAC, EDAC. 又 CC1平面 ABC ,而 ED平面 ABC , CC1ED. CC1AC=C , ED平面 A1ACC1. 3 分又 AC

    注意事项

    本文(2022年高中立体几何高考知识点 .pdf)为本站会员(H****o)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开