2022年相交线与平行线实数的知识点 .pdf
学习必备欢迎下载知识点1. 相交线同一平面中,两条直线的位置有两种情况:相交: 如图所示,直线 AB与直线 CD相交于点 O ,其中以 O为顶点共有 4 个角:1,2,3,4;邻补角:其中1 和2 有一条公共边, 且他们的另一边互为反向延长线。像1和2 这样的角我们称他们互为邻补角;对顶角:1 和3有一个公共的顶点O ,并且1的两边分别是3 两边的反向延长线,具有这种位置关系的两个角,互为对顶角;1 和2 互补,2 和3 互补,因为同角的补角相等,所以13。所以, 对顶角相等例题:1. 如图,3123,求1,2,3,4的度数。2.如图,直线 AB、CD、EF 相交于 O,且AB CD,127,则2_,FOB_。CEA 2 O B1FD垂直: 垂直是相交的一种特殊情况两条直线相互垂直,其中一条叫做另一条的垂线, 它们的交点叫做垂足。 如图所示,图中 ABCD ,垂足为 O 。垂直的两条直线共形成四个直角,每个直角都是 90 。例题:如图,ABCD ,垂足为 O,EF经过点 O ,126 ,求EOD ,2,3 的度数。( 思考:EOD 可否用途中所示的4 表示? ) 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 1 页,共 8 页学习必备欢迎下载垂线相关的基本性质:(1) 经过一点有且只有一条直线垂直于已知直线;(2) 连接直线外一点与直线上各点的所有线段中,垂线段最短;(3) 从直线外一点到直线的垂线段的长度,叫做点到直线的距离。例题:假设你在游泳池中的P点游泳, AC是泳池的岸,如果此时你的腿抽筋了,你会选择那条路线游向岸边?为什么?*线段的垂直平分线: 垂直且平分一条线段的直线, 叫做这条线段的垂直平分线。如何作下图线段的垂直平分线?2. 平行线:在同一个平面内永不相交的两条直线叫做平行线。平行线公理: 经过直线外一点,有且只有一条直线和已知直线平行。如上图,直线 a 与直线 b 平行,记作 a/b 3. 同一个平面中的三条直线关系:三条直线在一个平面中的位置关系有4 中情况:有一个交点,有两个交点,有三个交点,没有交点。(1)有一个交点:三条直线相交于同一个点,如图所示,以交点为顶点形成各个角,可以用角的相关知识解决;精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 2 页,共 8 页学习必备欢迎下载例题:如图,直线 AB,CD,EF相交于 O点,DOB 是它的余角的两倍,AOE 2DOF,且有 OG OA ,求EOG 的度数。(2)有两个交点 :(这种情况必然是两条直线平行,被第三条直线所截。)如图所示,直线 AB ,CD平行,被第三条直线 EF所截。这三条直线形成了两个顶点,围绕两个顶点的 8 个角之间有三种特殊关系:*同位角: 没有公共顶点的两个角,它们在直线AB,CD的同侧,在第三条直线EF的同旁(即位置相同) ,这样的一对角叫做同位角;*内错角: 没有公共顶点的两个角,它们在直线AB,CD之间,在第三条直线EF的两旁(即位置交错) ,这样的一对角叫做内错角;*同旁内角: 没有公共顶点的两个角,它们在直线AB,CD之间,在第三条直线EF的同旁,这样的一对角叫做同旁内角;指出上图中的同位角,内错角,同旁内角。两条直线平行,被第三条直线所截,其同位角,内错角,同旁内角有如下关系:两直线平行,被第三条直线所截,同位角相等;两直线平行,被第三条直线所截,内错角相等两直线平行,被第三条直线所截,同旁内角互补。如上图,指出相等的各角和互补的角。例题:1. 如图,已知12180 ,3180 ,求4的度数。精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 3 页,共 8 页学习必备欢迎下载2. 如图所示, AB/CD,A135 ,E80 。求CDE 的度数。平行线判定定理:两条直线平行,被第三条直线所截,形成的角有如上所说的性质;那么反过来,如果两条直线被第三条直线所截,形成的同位角相等, 内错角相等, 同旁内角互补,是否能证明这两条直线平行呢?答案是可以的。两条直线被第三条直线所截,以下几种情况可以判定这两条直线平行:平行线判定定理1:同位角相等,两直线平行如图所示,只要满足12(或者34;57;68) ,就可以说 AB/CD 平行线判定定理2:内错角相等,两直线平行如图所示,只要满足62(或者54) ,就可以说 AB/CD 平行线判定定理3:同旁内角互补,两直线平行如图所示,只要满足5+2180 (或者6+4180 ) ,就可以说 AB/CD 平行线判定定理4:两条直线同时垂直于第三条直线,两条直线平行这是两直线与第三条直线相交时的一种特殊情况,由上图中1290 就可以得到。例题:1.已知: AB/CD ,BD 平分ABC,DB 平分ADC,求证: DA/BC AB12DC342.已知:AF、BD、CE 都为直线,B 在直线 AC 上,E 在直线 DF 上,且12,CD,求证:AF。精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 4 页,共 8 页学习必备欢迎下载DEF3124ABC(3)有三个交点当三条直线两两相交时,共形成三个交点,12 个角,这是三条直线相交的一般情况。如下图所示:你能指出其中的同位角,内错角和同旁内角吗?三个交点可以看成一个三角形的三个顶点,三个交点直线的线段可以看成是三角形的三条边。(4)没有交点:这种情况下,三条直线都平行,如下图所示:即 a/b/c。这也是同一平面内三条直线位置关系的一种特殊情况。例题:如图,CDAB,DCB=70,CBF=20,EFB=130,问直线 EF 与 CD有怎样的位置关系,为什么?精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 5 页,共 8 页学习必备欢迎下载第一章 实数考点一、实数的概念及分类(3 分)1、实数的分类正有理数有理数零有限小数和无限循环小数实数负有理数正无理数无理数无限不循环小数负无理数整数包括正整数、零、负整数。正整数又叫自然数。正整数、零、负整数、正分数、负分数统称为有理数。2、无理数在理解无理数时,要抓住“无限不循环”这一点,归纳起来有四类:(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率 ,或化简后含有 的数,如3+8 等;(3)有特定结构的数,如0.1010010001等;(4)某些三角函数,如sin60o等(这类在初三会出现)考点二、实数的倒数、相反数和绝对值1、相反数实数与它的相反数是一对数 (只有 符号不同 的两个数叫做互为相反数, 零的相反数是零 ) ,从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果 a 与 b 互为相反数 ,则有 a+b=0,a=-b,反之亦成立。2、绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a| 0。零的绝对值是它本身,若|a|=a,则 a 0;若|a|=-a,则 a 0。正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。3、倒数如果 a 与 b 互为倒数,则有 ab=1,反之亦成立。 倒数等于本身的数是1 和-1。零没有倒数 。考点三、平方根、算数平方根和立方根1、平方根如果一个数的平方等于a,那么这个数就叫做a的平方根(或二次方跟) 。一个数有两个平方根,它们 互为相反数 ;零的平方根是零;负数没有平方精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 6 页,共 8 页学习必备欢迎下载根。正数 a 的平方根记做“a” 。2、算术平方根正数 a 的正的平方根叫做a 的算术平方根,记作“a ” 。正数和零的算术平方根都只有一个,零的算术平方根是零。a (a0)0aaa2;注意a 的双重非负性:-a( a0)a0 3、立方根如果一个数的立方等于a,那么这个数就叫做a 的立方根(或a 的三次方根) 。一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。注意:33aa,这说明三次根号内的负号可以移到根号外面。考点四、科学记数法和近似数1、有效数字一个近似数四舍五入到哪一位,就说它精确到哪一位, 这时,从左边第一个不是零的数字起 到右边精确的数位止的所有数字,都叫做这个数的 有效数字 。2、科学记数法把一个数写做na10的形式,其中101a,n 是整数,这种记数法叫做科学记数法。考点五、实数大小的比较1、数轴规定了 原点、正方向和单位长度 的直线叫做 数轴(画数轴时, 要注意上述规定的三要素缺一不可) 。解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。2、实数大小比较的几种常用方法(1)数轴比较 :在数轴上表示的两个数,右边的数总比左边的数大。(2)求差比较 :设 a、b 是实数,,0baba,0babababa0(3)求商比较法:设a 、b是两正实数,;1;1;1babababababa精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 7 页,共 8 页学习必备欢迎下载(4)绝对值比较法 :设 a、b 是两负实数,则baba。(5)平方法 :设 a、b 是两负实数,则baba22。考点六、实数的运算(做题的基础,分值相当大)1、加法交换律abba2、加法结合律)()(cbacba3、乘法交换律baab4、乘法结合律)()(bcacab5、乘法对加法的分配律acabcba)(6、实数混合运算时,对于运算顺序有什么规定?实数混合运算时,将运算分为三级,加减为一级运算 ,乘除为二级运算 ,乘方为三级运算 。同级运算时,从左到右 依次进行; 不是同级 的混合运算, 先算乘方,再算乘除,而后才算加减;运算中如 有括号 时,先做括号内的运算,按小括号、中括号、大括号的顺序进行。7、有理数除法运算法则就什么?有理数除法运算法则可用两种方式来表述:第一,除以一个不等于零的数,等于乘以这个数的倒数 ;第二,两数相除,同号得正,异号得负,并把绝对值相除。零除以任何一个不为零的数,商都是零。8、什么叫有理数的乘方?幂?底数?指数?相同因数相乘的积的运算叫乘方, 乘方的结果叫幂,相同因数的个数叫指数,这个因数叫底数。记作 : an9、有理数乘方运算的法则是什么?负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数。零的任何正整数幂都是零。10、加括号和去括号时各项的符号的变化规律是什么?去(加)括号时如果括号外的因数是正数,去(加)括号后式子各项的符号与原括号内的式子相应各项的符号相同;括号外的因数是负数去 (加)括号后式子各项的符号与原括号内式子相应各项的符号相反。精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 8 页,共 8 页