欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    2022年直线参数方程的几何意义 .pdf

    • 资源ID:38585610       资源大小:88.24KB        全文页数:4页
    • 资源格式: PDF        下载积分:4.3金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要4.3金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2022年直线参数方程的几何意义 .pdf

    精品资料欢迎下载一、参数方程及参数等的几何意义若倾斜角为的直线过点)(00yxM, t 为参数,则该直线的参数方程可写为为参数,ttyytxxsincos00若直线过点M ,直线与圆锥曲线交于两点P、Q,则|MP|、 |MQ| 的几何意义就是:|21tMQtMP,;|MP|+|MQ| 的几何意义就是:|MQMP|t |t |21;|MP| |MQ| 的几何意义就是:|21ttMQMP;|PQ|的几何意义就是:2122121214)(|PQ|PQ|tttttttt,即. 例 1:已知直线l:01yx与抛物线2xy交于BA,两点,求线段AB的长和点)2, 1(M到BA,两点的距离之积。(1)如何写出直线l 的参数方程解:因为直线l 过定点M,且 l 的倾斜角为43,所以它的参数方程是43sin243cos1tytx, (t为参数),即tytx222221, (t为参数)(2)如何求出交点A,B 所对应的参数21tt ,?把代入抛物线的方程,得0222tt,222121tttt,(3)|MBMAAB 、与21tt,有什么关系?由参数方程的几何意义可得:104)(|2122121ttttttAB|MBMA=2|2|21tt精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 1 页,共 4 页精品资料欢迎下载二、求弦的中点坐标若过点 M)(00yx ,、倾斜角为的直线 l 与圆锥曲线交于A、B 两点,则弦的中点坐标公式为:2)sin()sin(22)cos()cos(2201021201021tytyyyytxtxxxx或)(22)()(2)(22)()(2212022012021211021011021ttpytpytpyyyyttpxtpxtpxxxx,21pp ,为常数,均不为零(其中中点 M 的相应参数为t,而221ttt,所以中点坐标也为:tpyytpxx2010) 若过点 M)(00yx ,、倾斜角为的直线l 与圆锥曲线交于A、 B 两点,且M 恰为弦AB 中点,则中点M 的相应参数:221ttt=0 (因为tpyytpxx200100,而21pp,均不为 0,所以 t=0)例 2:直线 l)(542531为参数, ttytx与双曲线1)2(22xy相交于 A、B 两点,求弦 AB中点 M 的坐标。解:把)(542531为参数, ttytx直接代入1)2(22xy中,可得:1)531()54(22tt,即0503072tt,则73021tt,所以 M 的横坐标为:716791)730(21531-, 点 M 的纵坐标为:727122)730(21542(注:这部分内容在演草纸上显示即可)所以中点 M 的坐标为)72716(,精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 2 页,共 4 页精品资料欢迎下载三应用部分例 3:经过点 M(2,1) 作直线 l,交椭圆141622yx于 A,B 两点,如果点M 恰好为线段AB的中点,求直l 的方程。解:设经过点M(2,1) 的直线 l 的参数方程为:)(,sin1cos2为参数,ttytx代入椭圆方程,整理得:08)sin2(cos4)1sin3(22tt由 t 的几何意义可知|B|21tMtMA,因为点 M 在椭圆内, 这个方程必有两个实根,所以1sin3)sin2(cos4221tt. 因为点 M 为线段 AB 的中点,所以0sin2cos0221,即tt于是直线l 的斜率为21tank,因此,直线l 的方程是0421)2(21yxxy,即. 例 4:已知经过点P(2,0),斜率为34的直线和抛物线xy22相交于A, B 两点,设线段AB 的中点为M,求点 M 的坐标 . 解:设过点P(2,0)的直线 AB 的倾斜角为 ,由已知可得:54sin,53cos. 所以,直线的参数方程为)(54532为参数,ttytx代 入 抛 物 线xy22, 整 理 得 :05 01 582tt, 中 点M的 相 应 参 数 为1615221ttt,所以点M 的坐标是)43,1641(精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 3 页,共 4 页精品资料欢迎下载例 5:已知直线l:x+y-1=0 与抛物线2xy交于 A,B 两点,求线段AB 的长和点M(-1,2)到 A、B 两点的距离之积. 解法一 :解:由201xyyx可得:012xx(*)由韦达定理可得:1-12121xxxx,10524)(k1|AB|212212xxxx由(*) 解得25-1-25121xx,25325321yy,记直线与抛物线的交点坐标为A)253251()253,251(,B,则24)53)(53(5353)2532()2511()2532()2511(|2222MBMA解法二 :解:因为直线l 过定点M,且 l 的倾斜角为43,所以它的参数方程是43sin243cos1tytx, (t为参数),即tytx222221, (t为参数)把代入抛物线的方程,得0222tt,222121tttt,104)(|2122121t tttttAB|MBMA=2|2|21tt. 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 4 页,共 4 页

    注意事项

    本文(2022年直线参数方程的几何意义 .pdf)为本站会员(H****o)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开