2022年第三章对数函数的运算法则 .pdf
精品资料欢迎下载年级高一学科数学版本人教实验A版内容标题对数运算、对数函数【本讲教育信息 】一. 教学内容:对数运算、对数函数二. 重点、难点:1. 对数运算0,0, 1, 1,0,0NMbaba(1)xNalogNax(2)01loga(3)1logaa(4)NaNalog(5)NMNMaaaloglog)(log(6)NMNMaaalogloglog(7)MxMaxaloglog(8)aMMbbalog/loglog(9)bxybayaxloglog(10)1loglogabba2. 对数函数xyalog,0a且1a定义域(,0)值域R 单调性)1 ,0(a), 1(a奇偶性非奇非偶过定点(1,0)图象xyalog与xya1log关于x轴对称精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 1 页,共 6 页精品资料欢迎下载【典型例题】例 1 求值(1)7log3)91(;(2)4log20log23log2log15151515;(3)18log3log2log)2(log66626;(4)81log16log329;(5))2log2(log)5log5)(log3log3(log2559384;(6)2)2(lg50lg2lg25lg。解:(1)原式491733)3(27log7log27log22333(2)原式115log15(3)原式18log)3log2(log2log6666236log18log2log666(4)原式58)3log54()2log24(23(5)原式815)2log23()5log23()3log65(532(6)原式)2lg50(lg2lg25lg2100lg2lg225lg例 2 若zyx,满足)(logloglog)(logloglog33132212yx)z(logloglog55150,试比较zyx、的大小关系。解: log2log21(log2x) 0log21(log2x)1log2x21x2(215)301. 同理可得y33(310)301,z55(56)301. 31021556,由幂函数yx301在(0,+)上递增知, yxz. 例 3 若2121loglogbbaanabnlog,则)(log21)(21naaabbbn。解: 由已知11ab,nnabab22)()(11nnaabb)(log21)(1naabbbn精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 2 页,共 6 页精品资料欢迎下载例 4 图中四条对数函数xyalog图象,底数a为101,53,34,3这四个值,则相对应的C1, C2,C3,C4的值依次为()A. 101,53,34,3B. 53,101,34,3C. 101,53,3,34D. 53,101,3,34答案: A 例 5 求下列函数定义域(1))lglg(lg xy(2))43lg(2xxy(3))1(log21xy解:(1)1lg0lglg x1lg x),10(x(2)0432xx),4() 1,(x(3)110 x2, 1(x例 6 求下列函数的增区间(1)1log2xy(2))82(log221xxy解:(1)ty2log1xt), 1() 1 ,()(xfy在(, 1)(2)ty21log822xxt),4()2,()(xfy在)2,(例 7 研究函数)1(log)(22xxxfy的定义域、值域、奇偶性、单调性。解: (1)xxxx221012xx 定义域为 R 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 3 页,共 6 页精品资料欢迎下载(2)Rx),0(12xxRy为值域(3))1(log)(1)(log)(2222xxxxxf)()1(log11log12222xfxxxx 奇函数(4)),0(x时,xxxxy11log)1(log2222xxt112ty2l o g)(xfy在),0(上 奇函数)(xfy为 R 上例 8 已知)1 ,0(x,0a且1a,试比较)1(logxa与)1 (logxa的大小关系。解:(1))1 ,0(a时,)1(log)1(logxxaa0)1 (log)1(log)1(log2xxxaaa(2)),1 (a时,)1(log)1(logxxaa)1(log)1(logxxaa0)1(log2xa综上所述,)1(log)1(logxxaa例 9 函数)34(log)(22kxkxxfy(1)若定义域为R,求k的取值范围。(2)若值域为R,求k的取值范围。解:(1)0k时,3log2yRx4300121602kkkk)43, 0k(2)0121602kkk),43k【模拟试题】(答题时间: 30 分钟)1. 求值:精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 4 页,共 6 页精品资料欢迎下载(1)2log5)1251(;(2)8lg5.0lg215lg4lg;(3))2log3(log)6)(log6(log3232;(4)6lg26lg)6(lg3lg2lg62。2. 正实数yx,满足zyx643(1)求证:yxz2111(2)比较yyx6 ,4,3的大小关系3. 已知a2log3,b2log5试用ba,表示90log304. ),1 ( dx,xad2log,2logxbd,)(loglogxcdd,试比较cba,大小关系。5. 若12aba,则baabbaabbalog,log,log,log的大小关系是。6. 1mn,试比较nmlog与nm2log2的大小关系。7. 研究函数)1(log)(xaaxfy(0a且1a)的定义域及单调性。【试题答案】1. (1)8558log)2log(355(2)原式1lglg22(3)2)2log3(log)2log1)(3log1 (3232(4)16lg16lg)16(lg3lg2lg22. (1)令010643kzyx6lg4lg3lgkzkykx2lg1)3lg6(lg111kkxz2lg124lg21kky 成立(2)kkkyx4lg43lg3434lg3lg3lg44lg3081lg64lg4lg3lgk精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 5 页,共 6 页精品资料欢迎下载4lg66lg46lg4lg6lg64lg464kkkzy064lg36lg6lg4lg2kzyx6433. 5log13log122ba5l o g3l o g15l o g3l o g2130log90log90log22222230baabbaabbaba21111214. xxaddloglogxbdl o g2)1 , 0(logxdcab05. 0log1logbbaaa)21,0(0l o g1l o gaabbb)1 ,21(l o g ab)2, 1 (l o g babaabababbaloglogloglog6. mnmnnnmm22222log1log1loglog2loglog0)log1(logloglog2222mmmn7. (1)) 1 ,0(a01aax 定义域为)0,(tyal o g1xat)(xfy(2)),1 (a01aax 定义域为),0(tyalog1xat)(xfy精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 6 页,共 6 页