俄歇电子能谱分析光电子能谱讲稿.ppt
俄歇电子能谱分析光电子能谱1第一页,讲稿共三十九页哦 俄歇(Auger)过程和俄歇电子 1925年,法国科学家年,法国科学家Pierre Auger 在用在用X射线研究某些惰性射线研究某些惰性气体的光电效应时,意外地发现了一些短小的电子轨迹。气体的光电效应时,意外地发现了一些短小的电子轨迹。轨迹的长度不随入射轨迹的长度不随入射X射线的能量而变化,但射线的能量而变化,但随原子的不同随原子的不同而变化而变化。Auger认为:这一现象是原子受激后的另一种退激过程认为:这一现象是原子受激后的另一种退激过程所至。过程涉及原子内部的能量转换,而后使外层电子克服结所至。过程涉及原子内部的能量转换,而后使外层电子克服结合能向外发射。他的发现与所做的相应解释被证明是正确的。合能向外发射。他的发现与所做的相应解释被证明是正确的。因此,用他的名字来命名这种过程和发射的电子。因此,用他的名字来命名这种过程和发射的电子。 一、 俄歇电子能谱分析2第二页,讲稿共三十九页哦(1)(1)原子内某一内层电子被激发原子内某一内层电子被激发电离从而形成空位,电离从而形成空位,(2)(2)一个较高能级的电子跃一个较高能级的电子跃迁到该空位上,迁到该空位上,(3)(3)再接着另一个电子被激再接着另一个电子被激发发射,形成无辐射跃迁过发发射,形成无辐射跃迁过程,这一过程被称为程,这一过程被称为AugerAuger效应效应, ,被发射的电子称为被发射的电子称为AugerAuger电子。电子。 基本原理 3第三页,讲稿共三十九页哦 俄歇过程的系列和系列所包含的群系列是以受激产生的空穴在哪一个主壳层来划分是以受激产生的空穴在哪一个主壳层来划分 群是在系列下以填补电子与发射电子在基态时的位置来划分是在系列下以填补电子与发射电子在基态时的位置来划分。 K 系列KLL KLM KMM L 系列 LMM LMN LNN M系列 N系列 MNN MNO NOO 4第四页,讲稿共三十九页哦 俄歇电子的能量 由于俄歇电子是由原子由于俄歇电子是由原子各壳层电子的跃迁而产生各壳层电子的跃迁而产生的,而不同原子各壳层的的,而不同原子各壳层的能级都具有特定的值,因能级都具有特定的值,因此,不同原子所产生的俄此,不同原子所产生的俄歇电子具有相应的特征能歇电子具有相应的特征能量。量。 各种元素的俄歇电子能量原子序数原子序数3-10的原子产生俄歇电子,对的原子产生俄歇电子,对于原子序数大于于原子序数大于14的原子可以产生的原子可以产生KLL、LMM、MNN等俄歇电子等俄歇电子5第五页,讲稿共三十九页哦 俄歇电子的特点 具有一定的能量,能量的大小取决于原子内有关壳层的具有一定的能量,能量的大小取决于原子内有关壳层的结合能。能量大小一般在几个结合能。能量大小一般在几个eV至至2400eV。由于俄歇电子。由于俄歇电子的能量与原子的种类有关,也与原子所处的化学状态有关的能量与原子的种类有关,也与原子所处的化学状态有关。因此,它是又一种特征能量,具有类似指纹鉴定的效果。因此,它是又一种特征能量,具有类似指纹鉴定的效果。因而可以用来鉴别和分析不同的元素及化学结构。因而可以用来鉴别和分析不同的元素及化学结构。6第六页,讲稿共三十九页哦虽然俄歇电子的实际发射深度取决于入射电子的穿透能力虽然俄歇电子的实际发射深度取决于入射电子的穿透能力,但真正,但真正能够保持其特征能量而逸出表面的俄歇电子却仅能够保持其特征能量而逸出表面的俄歇电子却仅限于限于表层以下表层以下03nm的深度范围的深度范围。这是因为大于这一深度处。这是因为大于这一深度处发射的俄歇电子,在到达表面以前将由于与样品原子的非发射的俄歇电子,在到达表面以前将由于与样品原子的非弹性散射而被吸收,或者部分地损失能量而混同于大量二弹性散射而被吸收,或者部分地损失能量而混同于大量二次电子信号的背景。次电子信号的背景。03nm的深度只相当于表面几个原子层,这就是俄歇电子能的深度只相当于表面几个原子层,这就是俄歇电子能谱仪作为有效的表面分析工具的依据。显然,在这样的浅表层内谱仪作为有效的表面分析工具的依据。显然,在这样的浅表层内,入射电子束的侧向扩展几乎完全不存在,其空间分辨率直接与,入射电子束的侧向扩展几乎完全不存在,其空间分辨率直接与束斑尺寸束斑尺寸dp相当。目前,利用细聚焦入射电于束的相当。目前,利用细聚焦入射电于束的“俄歇探针俄歇探针仪仪”可以分析大约可以分析大约50nm的微区表面化学成分。的微区表面化学成分。7第七页,讲稿共三十九页哦 俄歇电子能谱仪基本原理 俄歇电子能谱仪(俄歇电子能谱仪(Auger Electron Spetroscopy, AES)的基)的基本原理是:用一定能量的电子束轰击样品,使样品内电子本原理是:用一定能量的电子束轰击样品,使样品内电子电离,产生俄歇电子,俄歇电子从样品表面逸出进入真空电离,产生俄歇电子,俄歇电子从样品表面逸出进入真空,被收集和进行分析。,被收集和进行分析。由于俄歇电子具有特征能量,其特征能量主要由原子的种由于俄歇电子具有特征能量,其特征能量主要由原子的种类确定。因此,测定俄歇电子的能量,就可以确定原子的种类确定。因此,测定俄歇电子的能量,就可以确定原子的种类,即进行类,即进行定性分析定性分析;根据俄歇电子信号的强度,可确定元素;根据俄歇电子信号的强度,可确定元素含量,即进行含量,即进行定量分析定量分析。再根据俄歇电子能量峰的位移和形。再根据俄歇电子能量峰的位移和形状变化,可获得样品表面信息。状变化,可获得样品表面信息。8第八页,讲稿共三十九页哦 俄歇电子能谱分析的特点 分析层薄分析层薄,能提供固体样品表面,能提供固体样品表面03nm区域薄层的成分信区域薄层的成分信息;息; 可分析元素范围广可分析元素范围广,可分析出,可分析出H和和He以外的所有元素,对轻以外的所有元素,对轻元素敏感;元素敏感; 分析区域小分析区域小,可用于材料中,可用于材料中50nm区域内的成分变化的分析区域内的成分变化的分析; 能对能对元素的化学态元素的化学态进行分析;进行分析; 定量分析精度较低定量分析精度较低。目前,利用俄歇电子能谱仪进行表面成。目前,利用俄歇电子能谱仪进行表面成分的定量分析,基本上只是半定量的水平。常规情况下,相对分的定量分析,基本上只是半定量的水平。常规情况下,相对精度仅为精度仅为30%左右。如果能对俄歇电子的有效发射深度估计较为准左右。如果能对俄歇电子的有效发射深度估计较为准确,相对精度可提高到约确,相对精度可提高到约5%。9第九页,讲稿共三十九页哦 俄歇电子能谱分析 定性分析 实际分析的俄歇电子图谱是样品中所有元素俄歇电子图实际分析的俄歇电子图谱是样品中所有元素俄歇电子图谱的组合,根据测试获得的俄歇电子谱中的位置和形状与谱的组合,根据测试获得的俄歇电子谱中的位置和形状与手册中提供的纯元素的手册中提供的纯元素的标准图谱进行对比标准图谱进行对比来识别元素的来识别元素的种类,是俄歇电子能谱仪定性分析的主要内容。种类,是俄歇电子能谱仪定性分析的主要内容。 标准俄歇图谱提供了各元素俄歇峰的能量位置、形状标准俄歇图谱提供了各元素俄歇峰的能量位置、形状和相对强度。每种元素一般都有数个俄歇峰。和相对强度。每种元素一般都有数个俄歇峰。10第十页,讲稿共三十九页哦 定性分析的一般过程为:定性分析的一般过程为: (1) 根据对样品材质和工艺的了解,选一个或数个最强峰,根据对样品材质和工艺的了解,选一个或数个最强峰,初步确定样品表面可能存在的元素,然后利用标准俄歇图初步确定样品表面可能存在的元素,然后利用标准俄歇图谱对这几种可能得到元素进行对比分析;谱对这几种可能得到元素进行对比分析;(2) 若谱图中已无未有归属的峰,则定性分析结束;若还若谱图中已无未有归属的峰,则定性分析结束;若还有其它峰,则把已标定的峰去除之后再重复前一步骤标有其它峰,则把已标定的峰去除之后再重复前一步骤标定剩余的峰。定剩余的峰。 目前俄歇电子能谱仪上,对样品的定性分析,可通过目前俄歇电子能谱仪上,对样品的定性分析,可通过能谱仪中的计算机软件来自动完成。但对某些重叠峰和能谱仪中的计算机软件来自动完成。但对某些重叠峰和微量元素弱峰需通过人工分析确定。微量元素弱峰需通过人工分析确定。11第十一页,讲稿共三十九页哦 定量分析 目前,俄歇电子图谱的实用定量分析方法有两类:目前,俄歇电子图谱的实用定量分析方法有两类:标准样品法和相对灵敏度因子法。其中应用较多的是标准样品法和相对灵敏度因子法。其中应用较多的是相对灵敏度因子法相对灵敏度因子法。相对灵敏度因子法相对灵敏度因子法是将各元素产生的俄歇电子信号换算成是将各元素产生的俄歇电子信号换算成Ag当量来进行比较计算的。当量来进行比较计算的。 测量纯元素测量纯元素A与纯与纯Ag的主要俄歇峰的强度的主要俄歇峰的强度IA和和IAg,则,则元素元素A的的相对灵敏度因子相对灵敏度因子为:为:AgAA/IIS(12-2)12第十二页,讲稿共三十九页哦 如果测得俄歇谱中所有存在元素(如果测得俄歇谱中所有存在元素(A, B, C, N)的相对)的相对灵敏度因子,则灵敏度因子,则A元素的原子百分浓度可由下式计算:元素的原子百分浓度可由下式计算:NAjjjSISIC)/(/AAA(12-3)13第十三页,讲稿共三十九页哦 俄歇电子能谱仪的应用 从自由能的观点来看,不同温度和加工条件下材料内部从自由能的观点来看,不同温度和加工条件下材料内部某些合金元素或杂质元素在自由表面或内界面某些合金元素或杂质元素在自由表面或内界面(例如晶界例如晶界)处处发生偏析,以及它们对于材料性能的种种影响、早巳为人发生偏析,以及它们对于材料性能的种种影响、早巳为人们所猜测或预料到了。们所猜测或预料到了。 可是,由于这种偏析有时仅仅发生在界面的可是,由于这种偏析有时仅仅发生在界面的几个原子层几个原子层范围范围以内,在俄歇电子能谱分析方法出现以前,很难得到确以内,在俄歇电子能谱分析方法出现以前,很难得到确凿的实验证据。具有极高表面灵敏性的俄歇谱仪技术,为成凿的实验证据。具有极高表面灵敏性的俄歇谱仪技术,为成功地解释各种和功地解释各种和界面化学成分界面化学成分有关的材料性能特点,提供了有关的材料性能特点,提供了极其有效的分析手段。极其有效的分析手段。14第十四页,讲稿共三十九页哦 目前,在材料科学领域内,许多金属和合金晶界脆断、蠕变目前,在材料科学领域内,许多金属和合金晶界脆断、蠕变、腐蚀、粉末冶金、金属和陶瓷的烧结、焊接和扩散连接工艺、腐蚀、粉末冶金、金属和陶瓷的烧结、焊接和扩散连接工艺、复合材料以及半导体材料和器件的制造工艺等,都是俄歇谱、复合材料以及半导体材料和器件的制造工艺等,都是俄歇谱仪应用得十分活跃的方面。仪应用得十分活跃的方面。15第十五页,讲稿共三十九页哦 研究金属及合金脆化的本质 晶间断裂是脆性断裂的一种特殊形式,有的是由于片状沉淀晶间断裂是脆性断裂的一种特殊形式,有的是由于片状沉淀在晶界析出而引起的,我们可以用扫描电镜、选区电子衍射、在晶界析出而引起的,我们可以用扫描电镜、选区电子衍射、电子探针等手段确认晶界析出物的形貌、晶体结构和化学成分电子探针等手段确认晶界析出物的形貌、晶体结构和化学成分,从而找出产生脆断的原因。,从而找出产生脆断的原因。 但是还有一些典型的晶间脆断,如合金钢的回火脆断及难熔金但是还有一些典型的晶间脆断,如合金钢的回火脆断及难熔金属的脆断,在电子显微镜放大几十万倍下观察,仍未能在晶界处属的脆断,在电子显微镜放大几十万倍下观察,仍未能在晶界处发现任何沉淀析出,人们一直怀疑这可能是一些有害杂质元素在发现任何沉淀析出,人们一直怀疑这可能是一些有害杂质元素在晶界富集而引起脆断,但一直苦于拿不出直接的证据。直到在俄晶界富集而引起脆断,但一直苦于拿不出直接的证据。直到在俄歇能谱对断口表面进行分析后,合金钢回火脆性本质才被揭开。歇能谱对断口表面进行分析后,合金钢回火脆性本质才被揭开。16第十六页,讲稿共三十九页哦 钢在钢在550左右回火时的脆性、难左右回火时的脆性、难熔金属的晶界脆断、镍基合金的硫脆熔金属的晶界脆断、镍基合金的硫脆、不锈钢的脆化敏感性、结构合金的、不锈钢的脆化敏感性、结构合金的应力腐蚀和腐蚀疲劳等等,都是杂质应力腐蚀和腐蚀疲劳等等,都是杂质元素在晶界偏析引起脆化的典型例子元素在晶界偏析引起脆化的典型例子。引起晶界脆性的元素可能商。引起晶界脆性的元素可能商S、P、Sb、Sn、As、O、Te、Si、CI、I等,有时它们的平均含量很低等,有时它们的平均含量很低 ,但在晶界附近的但在晶界附近的几个原于层内几个原于层内浓浓度竞富集到度竞富集到10 104倍。倍。17第十七页,讲稿共三十九页哦 可见,表界面的元素偏聚问题是金属及合金中影响其性可见,表界面的元素偏聚问题是金属及合金中影响其性能的一个很重要的问题,而表界面的成分分析研究中,俄能的一个很重要的问题,而表界面的成分分析研究中,俄歇谱仪具有其它分析仪器不可替代的作用。歇谱仪具有其它分析仪器不可替代的作用。18第十八页,讲稿共三十九页哦 了解微合金元素的分布特征 早在五六十年代,人们就发现微合金化对材料组织和性能有很早在五六十年代,人们就发现微合金化对材料组织和性能有很大影响。如结构钢加硼可以提高淬透性,高温合金加大影响。如结构钢加硼可以提高淬透性,高温合金加B、Zr、稀、稀土元素可提高抗蠕变性能等。土元素可提高抗蠕变性能等。 但金相观察或化学分析均无法查知这些元素的存在形式和分布但金相观察或化学分析均无法查知这些元素的存在形式和分布状态。有人推测,可能由于表面吸附现象,使这些元素富集在晶状态。有人推测,可能由于表面吸附现象,使这些元素富集在晶界上,从而改善晶界状态,进而影响相变过程及提高高温下晶界界上,从而改善晶界状态,进而影响相变过程及提高高温下晶界的强度。俄歇谱仪为研究这些微量元素的作用机理提供了有效的的强度。俄歇谱仪为研究这些微量元素的作用机理提供了有效的手段。手段。19第十九页,讲稿共三十九页哦 复合材料界面成分的分析 复合材料中增强纤维与基体金属之间的结合力,与界面上复合材料中增强纤维与基体金属之间的结合力,与界面上杂质元素的种类及含量有着极密切的关系,为了获得所要求杂质元素的种类及含量有着极密切的关系,为了获得所要求的基体和纤维的相容性,必须控制基体成分和杂质含量。在的基体和纤维的相容性,必须控制基体成分和杂质含量。在选择扩散阻挡层的成分、种类的研究中,俄歇谱仪都成为一选择扩散阻挡层的成分、种类的研究中,俄歇谱仪都成为一种必须的试验手段。种必须的试验手段。20第二十页,讲稿共三十九页哦二、 X射线光电子能谱分析19811981年获诺贝尔物理学奖年获诺贝尔物理学奖 K.Siegbahn K.Siegbahn 21第二十一页,讲稿共三十九页哦 “X射线光电子能谱(简称射线光电子能谱(简称X-Ray Photoelectron Spectroscopy, XPS)”也称为也称为“化学分析用电子能谱(简称化学分析用电子能谱(简称ESCA)”,它是,它是目前最广泛应用的表面分析方法之一,主要目前最广泛应用的表面分析方法之一,主要用于用于成分成分和和化学态化学态的分的分析析。 用单色的用单色的X射线照射样品,具有一定能量的入射光子同样品原射线照射样品,具有一定能量的入射光子同样品原子相互作用,子相互作用,光致电离光致电离产生了产生了光电子光电子,这些光电子,这些光电子从产生之处输从产生之处输运到表面运到表面,然后,然后克服逸出功而发射克服逸出功而发射,这就是,这就是X射线光电子发射的三步射线光电子发射的三步过程。用能量分析器分析光电子的动能,得到的就是过程。用能量分析器分析光电子的动能,得到的就是X射线光电子射线光电子能谱。能谱。22第二十二页,讲稿共三十九页哦 X射线光电子能谱仪的射线光电子能谱仪的基本工作原理基本工作原理是:是: 用一定能量的光子束(用一定能量的光子束(X射线)照射样品,使样品原子射线)照射样品,使样品原子中的内层电子中的内层电子以特定几率产生以特定几率产生光电子光电子,光电子从表面逸出进,光电子从表面逸出进入真空,被收集和分析。由于入真空,被收集和分析。由于光电子具有光电子具有特征能量特征能量,其,其特征特征能量主要由出射光电子束能量及原子种类确定。能量主要由出射光电子束能量及原子种类确定。因此,因此, 在一定的照射光子能量条件下测试光电子的能量,可以进行在一定的照射光子能量条件下测试光电子的能量,可以进行定性分析,确定原子种类;定性分析,确定原子种类; 根据光电子信号的强度,可半定量地分析元素含量;根据光电子信号的强度,可半定量地分析元素含量; 根据根据光电子能量峰的位移和形状变化光电子能量峰的位移和形状变化,可获得表面元素的,可获得表面元素的化学态化学态信息;信息;23第二十三页,讲稿共三十九页哦 X射线光电子能谱分析特点 分析层薄分析层薄 分析信息来自固体样品表面分析信息来自固体样品表面0.52nm区域薄层区域薄层。为什么得到为什么得到的是表面信息呢?的是表面信息呢? XPS是一种对样品表面敏感,主要获得样品是一种对样品表面敏感,主要获得样品表面表面元元素种类,化学状态及成分的分析技术,素种类,化学状态及成分的分析技术,特别是对各元素的特别是对各元素的化学状态化学状态的鉴别的鉴别。 XPS具有以下特点:具有以下特点:24第二十四页,讲稿共三十九页哦 这是因为:光电子发射过程的后两步,与俄歇电子从产生处输这是因为:光电子发射过程的后两步,与俄歇电子从产生处输运到表面然后克服逸出功而发射出去的过程是完全一样的,运到表面然后克服逸出功而发射出去的过程是完全一样的,只有只有深度极浅范围内产生的光电子,才能够深度极浅范围内产生的光电子,才能够能量无损能量无损地输运到表地输运到表面面。用来进行分析的光电子能量范围与俄歇电子能量范围大致相。用来进行分析的光电子能量范围与俄歇电子能量范围大致相同。所以和俄歇谱一样,从同。所以和俄歇谱一样,从X射线光电子谱得到的也是表面的射线光电子谱得到的也是表面的信息。信息。 分析元素范围广分析元素范围广 可分析出可分析出H和和He以外的所有元素。以外的所有元素。25第二十五页,讲稿共三十九页哦 具有测试深度具有测试深度-成分分布曲线的能力成分分布曲线的能力 如果用如果用离子溅射枪离子溅射枪溅射剥蚀表面,用溅射剥蚀表面,用X射线光电子能谱进行射线光电子能谱进行分析,两者交替进行,就可以得到元素及其化学状态的深分析,两者交替进行,就可以得到元素及其化学状态的深度分布情况。度分布情况。 空间分辨率差空间分辨率差 由于由于X射线不易聚焦,因而照射面积大,不适于微区分析。射线不易聚焦,因而照射面积大,不适于微区分析。XPS的空间分辨率大约为的空间分辨率大约为10100m。 数据收集速度慢数据收集速度慢26第二十六页,讲稿共三十九页哦 X射线光电子谱中峰的种类射线光电子谱中峰的种类 光电子峰和俄歇峰光电子峰和俄歇峰 光电子峰在谱图中是最主要的,它们是具有特征能量的光光电子峰在谱图中是最主要的,它们是具有特征能量的光电子产生。光电子峰的特点是:电子产生。光电子峰的特点是:谱图中强度最大、峰宽最谱图中强度最大、峰宽最小、对称性最好小、对称性最好。 由于光电子的产生,随后必然会产生俄歇电子,俄歇由于光电子的产生,随后必然会产生俄歇电子,俄歇电子的能量具有特征值,在光电子谱中也会产生俄歇峰电子的能量具有特征值,在光电子谱中也会产生俄歇峰。 由于由于俄歇电子的动能与激发源无关俄歇电子的动能与激发源无关,因而对于同一样,因而对于同一样品,在品,在以以动能动能为横坐标为横坐标的的XPS谱线全图中,俄歇谱线的谱线全图中,俄歇谱线的位置不会因改变位置不会因改变X射线激发源而发生变动。射线激发源而发生变动。27第二十七页,讲稿共三十九页哦 俄歇峰的这一现象正好与光电子的情况相反俄歇峰的这一现象正好与光电子的情况相反。对于光。对于光电子峰,在电子峰,在以以结合能结合能为横坐标为横坐标的的的的XPS谱线全图中,其位谱线全图中,其位置不会因置不会因X射线激发源的改变而发生变动。显然,利用射线激发源的改变而发生变动。显然,利用这一点,在区分光电子与俄歇谱线有困难时,利用换靶这一点,在区分光电子与俄歇谱线有困难时,利用换靶的方法就可以区分出光电子峰和俄歇峰。的方法就可以区分出光电子峰和俄歇峰。 X射线伴峰和鬼峰射线伴峰和鬼峰 X射线伴峰产生的原因是:在用于辐射的射线伴峰产生的原因是:在用于辐射的X射线中,除特射线中,除特征征X射线外,还有一些光子能量更高的成分。鬼峰主要是由于射线外,还有一些光子能量更高的成分。鬼峰主要是由于靶受到污染而导致。靶受到污染而导致。28第二十八页,讲稿共三十九页哦 X射线光电子能谱仪 X射线源射线源 X射线源由灯丝及阳极靶等组成,作用是产生特征射线源由灯丝及阳极靶等组成,作用是产生特征X射线射线。 因为光电子的动能取决于入射因为光电子的动能取决于入射X射线的能量及电子的结合射线的能量及电子的结合能,因此,最好用单色能,因此,最好用单色X射线源,否则射线源,否则轫致辐射轫致辐射和和X射线的射线的“伴线伴线”均会产生光电子,对光电子谱产生干扰,造成识谱困均会产生光电子,对光电子谱产生干扰,造成识谱困难。为此采用难。为此采用X射线单色器射线单色器。 XPS一般由激发源、样品台、电子能量分析器、检一般由激发源、样品台、电子能量分析器、检测系统以及超高真空系统等部分组成。测系统以及超高真空系统等部分组成。29第二十九页,讲稿共三十九页哦 XPS适用的适用的X射线,主要考虑谱线的宽度和能量。目前最射线,主要考虑谱线的宽度和能量。目前最常用的常用的X射线是射线是Al和和Mg的的K射线,都是未分解的双重线。射线,都是未分解的双重线。Al的的K射线的能量为射线的能量为1486.6eV,线宽线宽为为0.85 eV;Mg的的K射线射线的能量为的能量为1253.6eV,线宽为,线宽为0.70 eV。 电子能量分析器电子能量分析器 电子能量分析器是电子能量分析器是XPS的中心部件,其功能是测量从样品表面的中心部件,其功能是测量从样品表面激发出的光电子的能量分布。在激发出的光电子的能量分布。在XPS中,因为要测量谱线的化中,因为要测量谱线的化学位移,因此对电子能量分析器的分辨率要求较高。学位移,因此对电子能量分析器的分辨率要求较高。30第三十页,讲稿共三十九页哦 超高真空系统超高真空系统 XPS的超高真空系统有两个基本功能,一方面是光子辐射到样品的超高真空系统有两个基本功能,一方面是光子辐射到样品时和从样品中激发出的光电子进到能量分析器时,尽可能不和残时和从样品中激发出的光电子进到能量分析器时,尽可能不和残余气体分子发射碰撞;另一方面是使样品在测试过程中不发生表余气体分子发射碰撞;另一方面是使样品在测试过程中不发生表面吸附现象,保持原始状态。面吸附现象,保持原始状态。31第三十一页,讲稿共三十九页哦 X射线光电子能谱仪的主要功能 定性分析定性分析 实际样品的光电子谱图是样品所含元素的谱图的组合。根据对实际样品的光电子谱图是样品所含元素的谱图的组合。根据对样品进行全扫描获得的光电子谱图中峰的位置和形状,与手册提样品进行全扫描获得的光电子谱图中峰的位置和形状,与手册提供的纯元素的标准信息进行对比,既可以分析样品所包含的元素供的纯元素的标准信息进行对比,既可以分析样品所包含的元素种类,及进行定性分析。种类,及进行定性分析。 一般的分析是,首先识别最强谱线,然后,找出被识别出一般的分析是,首先识别最强谱线,然后,找出被识别出的元素的其它次强谱线,并将识别出的谱线标示出来。与俄的元素的其它次强谱线,并将识别出的谱线标示出来。与俄歇电子能谱仪的定性分析过程基本相同。歇电子能谱仪的定性分析过程基本相同。32第三十二页,讲稿共三十九页哦Cu的标准谱(X射线光电子谱主峰和化学位移表)Cu的标准谱(俄歇线)33第三十三页,讲稿共三十九页哦 标准光电子谱图中的标准光电子谱图中的能量坐标一般是能量坐标一般是结合能结合能,而不是动能。,而不是动能。尽管光电子的结合能与激发源光子能量(靶材)无关,但俄歇尽管光电子的结合能与激发源光子能量(靶材)无关,但俄歇电子的结合能与靶材有关;并且不同靶材使同一元素电离出的电子的结合能与靶材有关;并且不同靶材使同一元素电离出的光电子各峰在强度上不一定都完全相同。因此,分析时最好选光电子各峰在强度上不一定都完全相同。因此,分析时最好选用与标准谱图中相同的靶材。用与标准谱图中相同的靶材。 与俄歇电子能谱的分析相同,光电子谱的定性分析也可与俄歇电子能谱的分析相同,光电子谱的定性分析也可由能谱仪中的计算机软件来自动完成。但对某些重叠峰和由能谱仪中的计算机软件来自动完成。但对某些重叠峰和微量元素弱峰需通过人工分析来进一步确定。微量元素弱峰需通过人工分析来进一步确定。34第三十四页,讲稿共三十九页哦 定量分析定量分析 定量分析是根据光电子的信号强度与样品表面单位体积的原子定量分析是根据光电子的信号强度与样品表面单位体积的原子数成正比,通过测得的光电子信号的强度来确定产生光电子的元数成正比,通过测得的光电子信号的强度来确定产生光电子的元素在样品表面的浓度。素在样品表面的浓度。 XPS的定量分析与俄歇谱的定量分析有不少共同之处的定量分析与俄歇谱的定量分析有不少共同之处。主要也。主要也是采用相对灵敏度因子法。是采用相对灵敏度因子法。 但是,元素的相对灵敏度因子通常是以但是,元素的相对灵敏度因子通常是以F1s谱线强度为基准谱线强度为基准,其它元素的最强谱线或次强线与之相比而得。,其它元素的最强谱线或次强线与之相比而得。NAjjjSISIC)/(/AAA35第三十五页,讲稿共三十九页哦 与俄歇定量相比,与俄歇定量相比,X射线光电子谱没有背散射增强因子这射线光电子谱没有背散射增强因子这个复杂因素,也没有微分谱造成的峰形误差问题,个复杂因素,也没有微分谱造成的峰形误差问题,因此定量因此定量结果的准确性比俄歇结果的准确性比俄歇谱谱好好,一放认为,一放认为,其其误差可以不超过误差可以不超过20。36第三十六页,讲稿共三十九页哦 化学态分析化学态分析 化学态分析是化学态分析是XPS分析中最具特色的分析技术分析中最具特色的分析技术。它是基于元。它是基于元素素形成不同化合物形成不同化合物时,其化学环境发生变化,将导致内层时,其化学环境发生变化,将导致内层电子的结合能发生变化电子的结合能发生变化,在谱图中产生峰的位移(这种位移,在谱图中产生峰的位移(这种位移称为称为化学位移化学位移)和某些峰形的变化,而这种化学位移和峰形的)和某些峰形的变化,而这种化学位移和峰形的变化与元素化学态的关系是确定的。据此,可对元素进行化学变化与元素化学态的关系是确定的。据此,可对元素进行化学态分析,即确定元素形成哪种化合物。态分析,即确定元素形成哪种化合物。37第三十七页,讲稿共三十九页哦化学位移具有化学位移具有如下规律:如下规律: 氧化价态越高氧化价态越高,结合能越大;,结合能越大; 与元素所考虑与元素所考虑原子相结合的原原子相结合的原子,其元素电负子,其元素电负性越高,结合能性越高,结合能越大。越大。Be的1s光电子的化学位移38第三十八页,讲稿共三十九页哦 目前,化学态的分析还处于一种基于现有标准谱图和标目前,化学态的分析还处于一种基于现有标准谱图和标样进行对比分析的定性分析状态,还不是一种精确分析。样进行对比分析的定性分析状态,还不是一种精确分析。由于各种元素标准谱图资料有限,以及谱图校准的不精确由于各种元素标准谱图资料有限,以及谱图校准的不精确,将对分析造成较大困难。,将对分析造成较大困难。 用谱峰间距的变化来识别元素的化学态更为有效。这样用谱峰间距的变化来识别元素的化学态更为有效。这样,常用的对比方法有两种:,常用的对比方法有两种:化学位移法化学位移法和和俄歇参数法俄歇参数法。39第三十九页,讲稿共三十九页哦