某水利工程土石坝初步设计(沥青混凝土防渗墙)(62页).doc
-某水利工程土石坝初步设计(沥青混凝土防渗墙)-第 51 页河北工程大学水利水电工程专业毕业论文毕 业 论 文题目:西南地区某水利工程土石坝初步设计 姓 名:赵 龙学 号:110290302指导老师:屈春来老师2015年5月23日摘 要该江位于我国西南地区,本工程拦河坝沥青混凝土心墙坝。由于山区水位暴涨暴落,所以设置成兴利库容和拦洪库容完全不结合,即正常蓄水位和汛限水位均为2822.5米。本设计是侧重于坝工部分以挡水建筑物和泄水建筑物为主的土石坝水利枢纽设计。第一步,通过调洪演算得到最佳的溢流堰孔口净宽和堰顶高程方案,比较不同类型的土石坝在施工特点,技术经济等方面的优劣,最终确定大坝坝型为沥青混凝土心墙坝,并且初定了大坝的轮廓尺寸。然后通过土料设计,对照指标确定了砂砾料场的位置。再选择坝体的三个典型断面对大坝进行渗流计算,通过水利计算来确定渗透坡降是否满足要求。然后通过vb编程进行坝坡稳定分析,最终进行坝体细部构造设计。第二步,进入主要建筑物设计阶段。确定出大坝的型式及坝址和坝轴线。另外确定该枢纽的组成建筑物,包括挡水建筑物、泄水建筑物、水电站厂房等。最后进行细部构造设计,设计土石坝与地基、岸坡的连接,并设置相应的大坝安全监测。本设计以碾压式土石坝设计规范SL274-2001为基本设计依据,外加参考了与土石坝的有关资料和书籍。 关键词: 沥青混凝土心墙坝 大坝剖面基本尺寸 渗流计算 稳定分析Abstract窗体顶端The river is located in southwest China, the project for the asphalt concrete core wall dam dam. The project normal water level 2822.5m, corresponding to the reservoir storage capacity of 454.5 × 106 m3. Get the best opening clear width weir crest elevation and flood routing schemes by comparing the merits of different types of embankment dam construction characteristics, technical and economic aspects, and ultimately determine the dams of asphalt concrete core wall dam, and an initial outline of the size of the dam. Then determine where gravel quarry by earth material design, control indicators. Then select three typical sections of the dam dam seepage calculation, by hydraulic calculation, checking the source of the seepage gradient seepage Yat determine whether to meet the requirements. Then slope stability analysis by vb programming, and ultimately be detailed structural design of the dam.The river is located in southwest China, the project for the asphalt concrete core wall dam dam. The project normal water level 2822.5m, corresponding to the reservoir storage capacity of 454.5 × 106 m3. Get the best opening clear width weir crest elevation and flood routing schemes by comparing the merits of different types of embankment dam construction characteristics, technical and economic aspects, and ultimately determine the dams of asphalt concrete core wall dam, and an initial outline of the size of the dam. Then determine where gravel quarry by earth material design, control indicators. Then select three typical sections of the dam dam seepage calculation, by hydraulic calculation, checking the source of the seepage gradient seepage Yat determine whether to meet the requirements. Then slope stability analysis by vb programming, and ultimately be detailed structural design of the dam.The river is located in southwest China, the project for the asphalt concrete core wall dam dam. The project normal water level 2822.5m, corresponding to the reservoir storage capacity of 454.5 × 106 m3. Get the best opening clear width weir crest elevation and flood routing schemes by comparing the merits of different types of embankment dam construction characteristics, technical and economic aspects, and ultimately determine the dams of asphalt concrete core wall dam, and an initial outline of the size of the dam. Then determine where gravel quarry by earth material design, control indicators. Then select three typical sections of the dam dam seepage calculation, by hydraulic calculation, checking the source of the seepage gradient seepage Yat determine whether to meet the requirements. Then slope stability analysis by vb programming, and ultimately be detailed structural design of the dam.The river is located in southwest China, the project for the asphalt concrete core wall dam dam. The project normal water level 2822.5m, corresponding to the reservoir storage capacity of 454.5 × 106 m3. Get the best opening clear width weir crest elevation and flood routing schemes by comparing the merits of different types of embankment dam construction characteristics, technical and economic aspects, and ultimately determine the dams of asphalt concrete core wall dam, and an initial outline of the size of the dam. Then determine where gravel quarry by earth material design, control indicators. Then select three typical sections of the dam dam seepage calculation, by hydraulic calculation, checking the source of the seepage gradient seepage Yat determine whether to meet the requirements. Then slope stability analysis by vb programming, and ultimately be detailed structural design of the dam.窗体底端 This river is located in China's southwest, the barrage of asphalt concrete core wall dam project. Because the mountain water scary ups, so set to irrigation capacity of the storage and detention no union, namely the normal storage level and the level of 2822.5 meters. This design is focused on the dam work part is given priority to with water retaining structure and drainage structures of earth and rockfill dam water conservancy hub design. As a first step, through the best of overflow dam for flood regulating calculation orifice width and weir crest elevation scheme, comparison of different types of earth and rockfill dam in construction characteristics, technical and economic aspects of advantages and disadvantages, finally confirmed for asphalt concrete core wall dam, dam type, and initial dimensioning the outline of the dam. And then through the earth material design, control indicators to determine the position of yard. Then select three typical dam break in the face of dam seepage calculation, through hydraulic calculation to determine the permeability grade whether meet the requirements. Then the dam slope stability analysis by vb programming, eventually dam detail structure design. The second step, into the main building design stage. Determine the type of the dam and the dam site and the axis of the dam. In addition to determine the composition of the hub buildings, including the water retaining structure, drainage buildings, power station, etc. Finally carries on the detail structure design, the design of earth and rockfill dam and foundation, bank connection, and set up corresponding dam safety monitoring project. This design in the rolling type earth-rockfill dam design specification SL274-2001 "as the basic design basis, with reference of the earth-rock dam with the relevant information and books. Keywords: Asphalt concrete core wall Dam profile basic dimensions Seepage calculation Stability anlysis 目 录绪 论1第一章 基本资料21.1 工程流域概况21.2 风力和风向21.3 洪峰流量资料21.4 工程地质资料21.4.1坝址地质资料21.4.2 地震资料31.5 建筑材料31.5.1 料场的位置与储量资料31.5.2 物理力学性质概述31.6. 发电31.7.防洪3第二章 洪水调节部分62.1工程等别及建筑物级别的判定62.2 洪水调节计算原理62.2.1 确定洪水标准62.2.2 泄洪方式与水库运用方案的确定62.3 堰顶高程及泄洪孔口的选择62.3.1 堰顶高程及孔口尺寸选择原则72.3.2 初步方案拟定72.4 调洪演算结果与方案确定102.4.1 调洪演算的结果102.4.2 方案的选择11第三章 坝型选择及枢纽布置概述113.1 坝型选择123.2枢纽组成建筑物概述133.2.1 挡水建筑物部分13第四章 大坝设计概述144.1 土石坝坝型选择144.1.1 均质坝144.1.2 堆石坝144.1.3 面板坝144.1.4沥青混凝土心墙坝144.2 土石坝剖面的基本尺寸144.2.1 坝顶高程的确定154.2.2设计洪水位+正常运用情况超高164.2.3校核洪水位+非常运用情况超高184.2.4正常蓄水位+地震安全加高204.3坝顶高程的确定及坝高的确定204.4 坝顶宽度214.5 坝坡214.6防渗体214.6.1坝体防渗214.6.2坝基防渗224.7排水设备22第五章 土石坝的渗流计算235.1 设计说明235.1.1 渗流分析235.1.2 渗流分析方法235.1.3 典型计算断面与计算情况235.1.4计算结果235.1.5渗流分析的工况245.1.6 渗透系数的选择245.1.7 计算剖面的选择245.2 上游正常蓄水位与下游无水时245.2.1 最大(1-1)剖面渗流计算245.2.2 (2-2)剖面渗流计算265.2.3 (3-3)剖面渗流计算285.3上游设计洪水位与下游相应最高水位为5.0m时295.3.1 最大(1-1)剖面渗流计算295.3.2 (2-2)剖面渗流计算305.3.3(3-3)剖面渗流计算325.4上游校核洪水位与下游相应最高水位5.3m335.4.1 最大(1-1)剖面渗流计算335.4.2(2-2)剖面渗流计算355.4.3 (3-3)剖面渗流计算365.5总渗流量计算385.6 校核38第六章 土石坝的稳定分析406.1 稳定分析的目的406.2 作用在土石坝上的荷载406.2.1 土体自重406.2.2 渗流力406.2.3 孔隙压力406.3 稳定分析方法406.4 稳定分析的不利工况416.5 计算方法概述426.5.1计算程序流程图436.5.2计算结果概述与分析456.6稳定成果概述与分析47第七章 沉降量计算497.1 坝体沉降量计算497.1.1 基本假定497.1.2 方法与步骤497.2 坝基沉降量计算507.2.1 基本假定507.2.2 方法与步骤507.2.3 土坝的沉降量51第八章 土石料的结构布置538.1 坝壳的结构布置538.2 防渗体的结构布置538.3 排水设施及护坡的结构布置538.4 过渡层的结构布置54第九章 细部构造569.1 坝顶569.2 防渗体569.3 上、下游护坡579.3.1 上游护坡579.3.2 下游护坡589.3.3 坝坡排水589.4 排水设施599.5 地基处理599.5.1砂砾石地基处理609.5.2 坝基防渗墙的型式60第十章 土石坝与地基、岸坡的连接6110.1土石坝与坝基的连接6110.2土石坝与岸坡的连接61第十一章 大坝安全监测6211.1大坝安全监测的一般规定6211.2 监测设计应遵守下列原则6211.3 地震监测设置应符合下列要求6211.4 沥青混凝土防渗体6211.5 巡视检查的主要项目62结 论63附录1 源程序代码64附录2 GeoStudio 2007图71附录2.1最大剖面2-2渗流分析图71附录2.2稳定计算图72谢 辞75参考文献76绪 论我国的水资源状况存在着俩面性。一方面,我国是水资源比较丰富的国家之一。另一方面,由于我国人口众多,人均水资源占有量极少,因为我国又是一个极为贫水的国家。新中国成立后,党和政府十分重视水利事业,在国民经济恢复时期,就作出了治理淮河、修建长江荆江分洪工程和官厅水库的决定。 改革开放以来,党和政府将水利水电建设事业提到了更大高度,提出水利不仅是农业的命脉,也是国民经济的命脉,而且是中华民族的生命线,把水利水电建设作为基础产业,优先发展,重点发展。通过本次毕业设计可以使学生更好的了解我国水利水电事业的相应情况。本次毕业设计的任务是把学生在专业主要课程内容所获得的知识加以系统化、巩固、扩大、深入,培养学生独立解决本专业技术问题的能力以及培养学生自学能力,培养学生的设计计算,编写说明书和绘图能力。基本原则是:设计应满足功能要求,并力求经济、安全、施工便利和美观,根据可能的和合理的方案进行技术经济比较来选定建筑物的型式、材料、布置。设计时注意的事项是:以严肃的态度对待资料,不自行修改和增减,一切必要的补充或修改必须征得指导老师的建议。本设计主要内容是对坝体进行设计。设计时,在对已知资料、洪水标准及工程级别进行严密分析的基础上先进行坝型比较和选择,确定坝型、枢纽布置方案和建筑物形式,接着初步拟定拟定坝型、枢纽布置及建筑物基本尺寸,计算其坝顶高程,然后进行渗流计算、稳定分析,最后进行细部构造以及地基处理等。在完成设计过程中主要参考了水工建筑物吗,SL274-2001碾压式土石坝设计规范,在屈老师的精心指导下完成本次设计。第一章 基本资料1.1 工程流域概况该江位于我国西南地区,流向自东南向西北,全长约122公里,流域面积2558平方公里,在坝址以上流域面积为780平方公里。 1.2 风力和风向 一般14月风力较大,实测最大风速为19.1 m/s,相当于8级风力,风向为西北偏西。水库吹程为15公里。实测多年平均风速14m/s。1.3 洪峰流量资料经过频率的分析,可以求得不同频率的洪峰流量如下表1-1所示,山区洪水的特性是暴涨暴落的。表1-1 不同频率洪峰流量(秒立米)频率0.0512510流量242017801420118010401.4 工程地质资料虽然土石坝对地质结构要求不像拱坝,重力坝以般苛刻,但是地质构造对土石坝的选址,建造,后期维护都有一定程度的决定性作用。1.4.1坝址地质资料 坝址位于该江中游地段的峡谷地带,河床比较平缓,坡降不太大,两岸高山耸立,构成高山深谷的地貌特征。(1) 河床冲积层。主要为卵砾石类土,砂质粘土与砂层均甚少,且多呈透镜体状,并有大漂石掺杂其中。沿河谷内分布:坝基部分冲积层厚度最大为32米,一般为20米左右。(2) 冲积层的渗透性能 经抽水试验后得,渗透系数k值为3×10-2厘米/秒1×102厘米/秒。1.4.2 地震资料本地区地震烈度定为7度。1.5 建筑材料1.5.1 料场的位置与储量资料各料场的位置与储量见坝区地形图。由于河谷内地地形平坦,采运尚方便。1.5.2 物理力学性质概述(1)土料:(见表1-2,表1-3,表1-4)(2)石料:坚硬玄武岩可作为堆石坝石料,储量较丰富,在坝址附近有石料场一处,覆盖层浅,开采条件较好。1.6. 发电本电站装3台8MW机组。正常蓄水位为2822.5米,汛限水位为2822.5米,死水位为2796.0米。1.7.防洪可减轻洪水对水库下游的威胁,过100年一遇和200年一遇洪水时,经水库调洪后,洪峰流量由原来1780秒立米和2420秒立米分别削减为769秒立米和861秒立米。要求设计洪水时最大下泄流量限制为900秒立米, 校核洪水位不超过正常蓄水位3.5米。表1-2 砂砾石的颗粒级配颗粒直径 料场300100100606020202.52.51.21.20.60.60.30.30.15<0.151#上5.218.621.412.318.613.95.44.60.32#上4.817.820.314.117.814.84.65.30.53#上3.815.418.515.316.420.53.56.20.44#上6.018.319.416.415.616.74.82.50.31#下4.514.120.123.214.97.28.67.20.22#下3.919.222.418.719.18.35.72.80.13#下5.023.119.114.218.48.96.34.10.94#下4.122.418.714.117.914.44.13.60.7表1-3 砂砾石的物理性质名称1#上2#上3#上4#上1#下2#下3#下4#下容重kN/m318.617.919.119.018.618.518.418.0比重2.752.742.762.752.752.732.732.72孔隙率%32.534.731.031.532.532.232.533.8软弱粒%2.01.50.91.22.50.81.01.2有机物淡色淡色淡色淡色淡色淡色淡色淡色注:各砂砾石料场渗透系数k值为2.0×10-2厘米/秒左右。最大孔隙率0.44,最小孔隙率0.27。表1-4第二章 洪水调节部分2.1工程等别及建筑物级别的判定本工程正常蓄水位为2822.5m,对应水库库容为454.5×106 m3。根据所给材料并查阅相应资料可以判别出枢纽的主要建筑物级别为2级。2.2 洪水调节计算原理 2.2.1 确定洪水标准永久建筑物洪水标准可以依据建筑物级别查得:正常运用(设计工况)洪水重现期100年;非常运用(校核工况)洪水重现期2000年。设计洪峰流量Q设 = 1780m3/s(P=1%),校核洪峰流量Q校 = 2420m3/s(P=0.05%)。 2.2.2 泄洪方式与水库运用方案的确定先假设土石坝为挡水建筑物,还应该设立相应泄水建筑物来减小在泄洪时土石坝所遭受洪水流动的影响。现对各种河岸泄水建筑物作如下讨论。(1)正槽溢洪道是以宽顶堰或各种实用堰为溢流控制的河岸溢洪道。控制段的溢流堰轴线与泄水槽轴线垂直;水流过堰后顺直进入泄水槽下泄。正槽溢洪道有以下几个特殊点:泄流能力大;水流条件平顺。(2)侧槽溢洪道用于山高坡陡的河岸。这种溢洪道水流条件复杂,必须经水工模型试验验证后才能确定选不选用该种溢洪道。(3)井式溢洪道如岸边有高程适宜的平台地形,且地质条件好,可开挖竖井,修成井式溢洪道。其优点是,泄水隧洞如能与施工导流洞合用,可使造价大大降低。但水流条件复杂,当库水位高于设计水位时,可能会淹没进口形成孔流,超泄能力低。 综上,枢纽工程采用正槽溢洪道。2.3 堰顶高程及泄洪孔口的选择做调洪演算时要先假设几组孔口宽度B及堰顶高程Ñ的方案,经过分析比较,针对指标,近而选出最优方案。2.3.1 堰顶高程及孔口尺寸选择原则如果堰顶高程Ñ过低,溢流孔口净宽B过大,则下泄能力就会加大,故而所需水库防洪库容可减小,挡水建筑物所在高度也可减小,淹没损失也减小;但是隧洞本身造价及工程量会加高。已知本工程允许下泄流量为900 m3/s,过大的下泄流量为下游抗冲所不能允许。假如堰顶高程Ñ过高,孔口净宽B过小,则结果和上述结论相反。2.3.2 初步方案拟定 依据已建好的项目的工作经验,假设三组孔口尺寸与堰顶高程如下(采用单孔泄洪):方案一: Ñ=2810m, B=8m;方案二: Ñ=2811m, B=9m; 方案三: Ñ=2812m, B=9m;(一)方案一: Ñ=2810m, B=8m设计洪峰流量 = 1780m3/s(P=1%)4115.701.67602.638.68-7.01454.5447.492822.0012.008400.505.77565.348.14-2.37447.49445.122821.9111.91121139.216.40559.008.058.35445.12453.472822.2312.2316169124.35581.678.3815.97453.47469.442822.8412.84201557.522.43625.739.0113.42469.44482.862823.3513.3524952.313.71663.389.554.16482.86487.022823.3513.354409.45.90663.389.55-3.65487.02483.372823.3713.37校核洪峰流量Q校 = 2420m3/s(P=0.05%)4157.32.27602.638.68-6.41454.5448.092822.0312.038544.57.84567.468.17-0.33448.09447.762822.0112.01121548.822.30566.058.1514.15447.76461.912822.5512.5516229933.11604.658.7124.4461.91486.312823.4813.48202117.530.50673.099.6920.81486.31507.122824.2714.27241294.718.64733.1210.568.08507.12515.22824.5814.584556.68.02757.1410.90-2.88515.2512.322824.4714.47方案二: Ñ=2811m, B=9m;设计洪峰流量 = 1780m3/s(P=1%)4115.701.67598.248.61-6.94454.5447.562822.0111.018400.505.77560.418.07-2.3447.56445.262821.9210.92121139.216.40553.557.978.43445.26453.692822.2411.2416169124.35578.068.3216.03453.69469.722822.8511.85201557.522.43625.759.0113.42469.72483.142823.3612.3624952.313.71666.589.604.11483.14487.252823.5212.524409.45.90679.579.79-3.89487.25483.362823.3712.37校核洪峰流量Q校 = 2420m3/s(P=0.05%)4157.32.27598.238.61-6.34454.5448.162822.0311.038544.57.84561.948.09-0.25448.16447.912822.0211.02121548.822.30561.178.0814.22447.91462.132822.5611.5616229933.11602.928.6824.43462.13486.562823.4912.49202117.530.50677.139.7520.75486.56507.312824.2813.28241294.718.64742.3710.697.95507.31515.262824.5813.584556.68.02767.6711.05-3.03515.26512.232824.4613.46方案三: Ñ=2812m, B=9m设计洪峰流量 = 1780m3/s(P=1%)4115.701.67521.927.52-5.85454.5448.652822.0510.058400.505.77488.747.04-1.27448.65447.382822.0010.00121139.216.40485.046.999.41447.38456.792823.3610.3616169124.35511.527.3716.98456.79473.772823.0011.00201557.522.43559.658.0614.37473.77488.142823.5511.5524952.313.71602.148.675.04488.14493.182823.7411.744409.45.90617.068.89-2.99493.18490.192823.6311.63校核洪峰流量Q校 = 2420m3/s(P=0.05%)4157.