复数的向量表示 数学教案-复数的向量表示.docx
-
资源ID:38922697
资源大小:13.37KB
全文页数:6页
- 资源格式: DOCX
下载积分:9.9金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
复数的向量表示 数学教案-复数的向量表示.docx
复数的向量表示 数学教案复数的向量表示教学目标(1)驾驭向量的有关概念:向量及其表示法、向量的模、向量的相等、零向量;(2)理解并驾驭复数集、复平面内的点的集合、复平面内以原点为起点的向量集合之间的一一对应关系;(3)驾驭复数的模的定义及其几何意义;(4)通过学习复数的向量表示,培育学生的数形结合的数学思想;(5)通过本节内容的学习,培育学生的视察实力、分析实力,帮助学生逐步形成科学的思维习惯和方法教学建议一、学问结构本节内容首先从物理中所遇到的一些矢量动身引出向量的概念,介绍了向量及其表示法、向量的模、向量的相等、零向量的概念,接着介绍了复数集与复平面内以原点为起点的向量集合之间的一一对应关系,指出了复数的模的定义及其计算公式二、重点、难点分析本节的重点是复数与复平面的向量的一一对应关系的理解;难点是复数模的概念复数可以用向量表示,二者的对应关系为什么只能说复数集与以原点为起点的向量的集合一一对应关系,而不能说与复平面内的向量一一对应,对这一点的理解要加以重视在复数向量的表示中,从复数集与复平面内的点以及以原点为起点的向量之间的一一对应关系是本节教学的难点复数模的概念是一个难点,首先要理解复数的肯定值与实数肯定值定义的一样性质,其次要理解它的几何意义是表示向量的长度,也就是复平面上的点到原点的距离三、教学建议1在学习新课之前肯定要复习旧学问,包括实数的肯定值及几何意义,复数的有关概念、现行中学物理课本中的有关矢量学问等,特殊是对于基础较差的学生,这一环节不行忽视2理解并驾驭复数集、复平面内的点集、复平面内以原点为起点的向量集合三者之间的关系如图所示,建立复平面以后,复数 与复平面内的点 形成一对应关系,而点 又与复平面的向量 构成一对应关系因此,复数集 与复平面的以 为起点,以 为终点的向量集 形成一对应关系因此,我们常把复数 说成点Z或说成向量 点 、向量 是复数 的另外两种表示形式,它们都是复数 的几何表示相等的向量对应的是同一个复数,复平面内与向量 相等的向量有无穷多个,所以复数集不能与复平面上全部的向量相成一对应关系复数集只能与复平面上以原点为起点的向量集合构成一对应关系2这种对应关系的建立,为我们用解析几何方法解决复数问题,或用复数方法解决几何问题创建了条件3向量的模,又叫向量的肯定值,也就是其有向线段的长度它的计算公式是 ,当实部为零时,依据上面复数的模的公式与以前关于实数肯定值及算术平方根的规定一样这些内容必需使学生在理解的基础上坚固地驾驭4讲解教材第182页上例2的第(1)小题建议在讲解教材第182页上例2的第(1)小题时假如结合提问 的图形,可以帮助学生正确理解教材中的“圆”是指曲线而不是指圆面(曲线所包围的平面部分)对于倒2的第(2)小题的图形,画图时周界(两个同心圆)都应画成虚线5讲解复数的模讲复数的模的定义和计算公式时,要留意与向量的有关学问联系,结合复数与复平面内以原点为起点,以复数所对应的点为终点的向量之间的一一对应关系,使学生在理解的基础上记忆。向量 的模,又叫做向量 的肯定值,也就是有向线段OZ的长度 它也叫做复数 的模或肯定值它的计算公式是 教学设计示例复数的向量表示教学目的1驾驭复数的向量表示 ,复数模的概念及求法,复数模的几何意义2 通过数形结合探讨复数3培育学生辩证唯物主义思想重点难点复数向量的表示及复数模的概念教学学具投影仪教学过程()1复习提问:向量的概念;模;复平面2新课:一、复数的向量表示:在复平面内以原点为起点,点Z(a,b)为终点的向量OZ,由点Z(a,b)唯一确定因此复平面内的点集与复数集C之间存在一一对应关系,而复平面内的点集与以原点为起点的向量一一对应常把复数z=a+bi说成点Z(a,b)或说成向量OZ,并规定相等向量表示同一复数二、复数的模向量OZ的模(即有向线段OZ的长度)叫做复数z=a+bi的模(或肯定值)记作|Z|或|a+bi|Z|=|a+bi|=a+b例1 求复数z1=3+4i及z2=-1+2i的模,并比较它们的大小解:|Z1|2=32+42=25 |Z2|2=(-1)2+22=5|Z1|Z2|练习: 1已知z1=1+3i z2=-2i Z3=4 Z4=-1+2i在复平面内,描出表示这些向量的点,画出向量计算它们的模三、复数模的几何意义复数Z=a+bi,当b=0时zR |Z|=|a|即a在实数意义上的肯定值复数模可看作点Z(a,b)到原点的距离例2设ZC满意下列条件的点Z的集合是什么图形? |Z|=4 2|Z|4解:(略)练习: 模等于4的虚数在复平面内的点集 比较复数z1=5+12i z2=66i的模的大小已知:|Z|=|x+yi|=1 求表示复数x+yi的点的轨迹教学后记:板书设计:一、复数的向量表示: 三、复数模的几何意义二、复数的模 例2例1探究活动已知 要使 ,还要增加什么条件?解:要使 ,即 由此可知,点 到两个定点 和 的距离之和为6 ,如把看成动点,则它的轨迹是椭圆 因此,所要增加的条件是:点 应满意条件 说明此题是属于缺少条件的探究性问题,解决这类问题的一般做法是从结论动身,并采纳逆推的方法得出终结的结论,便理所求的条件