永磁同步电机控制系统设计与仿真毕业设计论文(33页).doc
-
资源ID:38987852
资源大小:686KB
全文页数:32页
- 资源格式: DOC
下载积分:15金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
永磁同步电机控制系统设计与仿真毕业设计论文(33页).doc
-永磁同步电机控制系统设计与仿真毕业设计论文-第 27 页永磁同步电机控制系统设计与仿真目 录摘 要IABSTRACTII1 绪论11.1 永磁同步电机的发展概况与研究现状11.2 永磁同步电机的研究意义21.3 论文主要研究内容32 永磁同步电机系统42.1 永磁同步电机的分类和结构42.2 永磁同步电机的工作原理和特点42.3 永磁同步电机数学模型63 永磁同步电机控制策略83.1 恒压频比控制83.2 矢量控制83.2.1 矢量控制的组成和原理93.2.2 矢量控制的控制方式103.2.3 矢量控制的坐标变换113.2.4 矢量控制的基本方程163.3 直接转矩控制173.3.1 定子磁链控制183.3.2 空间矢量控制213.4 直接转矩控制系统与矢量控制系统的比较213.5 小结224 基于Matlab/Simulink的永磁同步电机矢量控制系统仿真234.1 电压空间矢量脉宽调制原理234.1.1 电压空间矢量234.1.2 零矢量的作用254.1.3 空间电压矢量控制算法264.2 坐标变换模块274.3 SVPWM模块284.3.1 扇区选择284.3.2 计算X、Y、Z和TX 、TY定义284.3.3 计算矢量切换点Tcm1,Tcm2,Tcm3294.4 PMSM闭环矢量控制仿真模型314.5 仿真结果314.6 结束语325 结论335.1 研究总结335.2 未来研究方向和展望34致 谢35参考文献36永磁同步电机控制系统设计与仿真摘 要由于永磁同步电机具有体积小、功率密度大、效率和功率因数高等明显特点,从70年代末开始,永磁同步电机就得到广泛重视。随着高性能永磁材料的发展和价格的不断下降,永磁电机的应用越来越广泛。尤其是近年来,随着永磁材料的迅速发展和电力电子和控制技术的进步,永磁同步电机将越来越多地替代传统电机,应用前景非常的乐观,永磁电机及其驱动控制器设计也成了电机领域研究的热点课题,因而对永磁同步电机的研究是非常有意义的。本文先对永磁同步电机及其相关技术的发展过程、研究现状和趋势进行了一个比较全面的阐述,然后对永磁同步电机的结构、性能进行了简要介绍,最后讲述了几种永磁同步电机控制系统常用的控制策略。同时本文在分析永磁同步电机数学模型的基础上,借助于Matlab强大的仿真建模能力, 在Matlab/Simulink中建立了PMSM 控制系统的仿真模型,为PMSM控制系统的分析与设计提供了有效的手段和工具。此文借助这一手段在详细分析了永磁同步电机矢量控制的机理,并提出了一套相应的矢量控制方案后,建立了仿真和试验平台,进行了仿真分析和实验研究。关键词: 永磁同步电机/Matlab/Simulink仿真/矢量控制Permanent Magnet Synchronous Motor Control System Design And SimulationABSTRACTPermanent magnet synchronous motor has a small size, power density, higher efficiency and power factor distinctive features, starting from the late 1970s, the permanent magnet synchronous motor to get wide attention. With the development of high-performance permanent magnet materials and declining prices, the application of permanent magnet motor is more extensive. Especially in recent years, with the advances in the rapid development of permanent magnet materials and power electronics and control technologies, permanent magnet synchronous motor will increasingly replace traditional motor, the prospects are very optimistic, permanent magnet motor drive controller the design has become a hot topic of the motor areas of research, thus it is very significant to the study of permanent magnet synchronous motor.This article first a brief introduction to the structure of the permanent magnet synchronous motor, the performance, then a more comprehensive description of the development status and trends of the permanent magnet synchronous motor and its related technologies, and finally about several permanent magnet synchronous motor control system commonly used in control strategies.In the analysis of permanent magnet synchronous motor mathematical model based on the help of Matlab's powerful simulation modeling capabilities of Matlab/Simulink simulation model of the PMSM control system for PMSM servo control system analysis and design effective and tools. Text with the means of a detailed analysis of the mechanism of permanent magnet synchronous motor vector control, and a corresponding set of vector control programs, the establishment of the simulation and test platform for the simulation analysis and experimental research.Keywords: permanent magnet synchronous motor / Matlab / Simulink Simulation / Vector Control1 绪论永磁同步电机(Permanent Magnet Synchronous Machine即PMSM)因其结构简单、体积小、效率高和鲁棒性强等优点,广泛用于电机性能和控制精度要求较高的伺服系统,如数控机床、电动汽车、航空航天等领域1。PMSM是一个非线性、多变量、强耦合系统,对系统参数摄动和外界扰动十分敏感,因此常规线性控制方法很难获得理想的控制效果2。为了提高PMSM的控制性能,国内外研究人员提出了许多非线性控制方法,主要有:反步法控制、反馈线性化控制、滑模控制、智能控制、自适应控制和自抗扰控制等,这些非线性控制方法改善了PMSM系统性能,提高了系统鲁棒性。1.1 永磁同步电机的发展概况与研究现状永磁电机是采用永磁体代替通电线圈励磁的一种电动机。其起源很早,在19世纪20年代所出现的第一台电机就是由永磁体产生励磁的永磁电机3,但当时所采用的永磁材料是天然磁铁矿石,磁能密度低,所制成的电机体积大,不久便被电励磁电机所取代。而早期对永磁同步电机的研究主要为固定频率供电的永磁同步电机运行特性的研究,特别是稳态特性和直接起动性能的研究。永磁同步电机的直接起动是依靠阻尼绕组提供的异步转矩将电机加速到接近同步转速,然后由磁阻转矩和同步转矩将电机牵入同步。上个世纪八十年代国外开始对逆变器供电的永磁同步电动机进行深入的研究。逆变器供电的永磁同步电机与直接起动的永磁同步电机的结构基本相同,但在大多数情况下无阻尼绕组。阻尼绕组有以下特点:第一,阻尼绕组产生热量,使永磁材料温度上升;第二,阻尼绕组增大转动惯量,使电机力矩惯量比下降;第三,阻尼绕组的齿槽使电机脉动力矩增大。在逆变器供电情况下,永磁同步电机的原有特性将会受到影响,其稳态特性和暂态特性与恒定频率下的永磁同步电机相比有不同的特点。随着价格低廉的钕铁硼(NdFeB)永磁材料的出现,使永磁同步电机得到了很大的发展,世界各国(以德国和日本为首)掀起了一股研制和生产永磁同步电动机及其伺服控制器的热潮,在数控机床、工业机器人等小功率应用场合,永磁同步电动机伺服系统是主要的发展趋势,加上永磁电机研究开发经验的逐步成熟,经大力推广和应用已有研究成果,使永磁电机在国防、工农业生产和日常生活等方面获得越来越广泛的应用。正向高转速、高转矩、高功能化和微型化方面发展。我国是世界第一稀土大国,稀土永磁同步电机已经在航空航天多种型号中得到成功的应用, 所以在开发高磁场永磁材料方面我国具有得天独厚的有利条件。又由于稀土永磁磁极,可以获得较高的气隙磁密。装置结构紧凑采用永磁同步电机的永磁交流伺服系统可将同步电机改造为具备与直流伺服电动机相类似的伺服性能,并以其优异性能成为精密电气伺服控制系统的一种优选方案,代表了电伺服技术的发展方向,有望得到广泛的应用。尽管我国的稀土永磁材料和稀土永磁电机的科研水平都达到了国际先进水平,但是这些优势还没有完全发挥出来,因此,对我国来说,永磁同步电动机的发展还任重而道远,还有很大潜力可开发。充分发挥我国稀土资源丰富的优势,大力研究和推广应用以稀土永磁电机为代表的各种永磁电机,对我国国防、工农业、航空事业的发展及综合实力的提升具有重要的理论意义和实用价值。1.2 永磁同步电机的研究意义正如前面几节所述,永磁同步电动机(PMSM)具有体积小、重量轻、反应快、效率高等优点,随着电力电子技术和控制技术的发展,永磁同步电动机交流伺服系统已经在现代高性能伺服系统中得到了极为广泛的应用,尤其是近年来,随着永磁材料的迅速发展,电力电子和控制技术的进步,稀土永磁同步电机将越来越多地替代传统电机,应用前景非常的乐观,因而对永磁同步电机的研究是非常有意义的。随着我国航空工业的快速发展,普通电机难以满足系统的要求。例如多电飞机和全电飞机是未来飞机的重要发展方向,多电飞机和全电飞机在欧美等国家和地区已经开始研制4,其中的关键技术之一就是用电力作动器取代目前广泛应用的液压作动器,而这种取代的基本条件是电力作动器的功率密度和动态性能能否达到液压作动器的水平,目前的普通航空用电机还不能满足该要求,因此必须研究和开发出性能更好的电机,为发展各种先进的航空设备和工业系统奠定基础5。1.3 论文主要研究内容永磁同步电机随着其本身的特点,在国内外引起了人们的广泛关注,所以其应用前景非常可观,并加上我国得天独厚的最大稀土占有国的优势,永磁电机必会在我国形成一个应用高潮。所以本文主要讲述了几种永磁同步电机的控制方式,并重点分析了矢量控制和直接转矩控制。又由于矢量控制还是一个很不成熟的领域,还有很多的问题有待研究。为促进永磁同步电机控制理论的发展,本文对现有的一些永磁同步电机矢量控制方式进行了概括分析,提出了永磁同步电机矢量控制方案,并建立了一套完整的仿真和试验平台,为进一步研究永磁同步电机矢量控制提供了实用的物质基础。本文分了五章节去讲述了永磁同步电机:第一章主要讲述了永磁同步电机在国内外的发展概况、研究现状、永磁同步电机的研究意义和本文主要研究内容。第二章着重阐述了永磁同步电机系统,包括其结构、分类、特点和工作原理,以及永磁同步电机的数学模型。第三章着重介绍了永磁同步电机控制策略,包括恒压频比控制、矢量控制、直接转矩控制,并比较了矢量控制和直接转矩控制的优缺点。第四章应用矢量控制在Matlab环境中对永磁同步电机进行建模和仿真。第五章是研究总结以及未来研究方向和展望。2 永磁同步电机系统永磁式同步电机结构简单、体积小、重量轻、损耗小、效率高,和直流电机相比,它没有直流电机的换向器和电刷等缺点。和异步电动机相比,它由于不需要无功励磁电流,因而效率高,功率因数高,力矩惯量比大,定子电流和定子电阻损耗减小,且转子参数可测、控制性能好;但它与异步电机相比,也有成本高、起动困难等缺点。和普通同步电动机相比,它省去了励磁装置,简化了结构,提高了效率。2.1 永磁同步电机的分类和结构永磁同步电动机的转子磁钢的几何形状不同,使得转子磁场在空间的分布可分为正弦波和梯形波两种。因此,当转子旋转时,在定子上产生的反电动势波形也有两种:一种为正弦波;另一种为梯形波6。这样就造成两种同步电动机在原理、模型及控制方法上有所不同,为了区别由它们组成的永磁同步电动机交流调速系统,习惯上又把正弦波永磁同步电动机组成的调速系统称为正弦型永磁同步电动机(PMSM)调速系统或调速永磁同步电动机;而由梯形波(方波)永磁同步电动机组成的调速系统,在原理和控制方法上与直流电动机系统类似,故称这种系统为无刷直流电动机(BLDCM)调速系统 7。永磁同步电动机转子磁路结构不同,则电动机的运行特性、控制系统等也不同。根据永磁体在转子上的位置的不同,永磁同步电动机主要可分为:表面式和内置式。在表面式永磁同步电动机中,永磁体通常呈瓦片形,并位于转子铁心的外表面上,这种电机的重要特点是直、交轴的主电感相等;而内置式永磁同步电机的永磁体位于转子内部,永磁体外表面与定子铁心内圆之间有铁磁物质制成的极靴,可以保护永磁体。这种永磁同步电动机的重要特点是直、交轴的主电感不相等。因此,这两种电机的性能特点有所不同。采用正弦波的永磁同步电动机可根据永磁体在转子上放置的位置分为三种:一是永磁体埋在转子内的内磁式永磁同步电动机;一是永磁体安放在转子表面的外磁式永磁同步电动机;第三种是永磁体嵌入或部分嵌入的嵌入式永磁同步电动机。本节中采用的电机为凸装式正弦波永磁同步电机,结构如图2-1所示,定子绕组一般制成多相,转子由永久磁钢按一定对数组成,本系统的电机转子磁极对数为两对,则电机转速为n=60fp,f为电流频率,P为极对数8。磁钢 定子图2-1 凸装式正弦波永磁同步电机结构图2.2 永磁同步电机的工作原理和特点永磁同步电机实际工作是一种交流电机,其定子运行是三相相差的交流电,而转子则是永磁体。但是这种电机最大的优势就是交流电能量由直流提供,这样就可以对电机进行精确的控制,而且解决了电刷带来的寿命问题。与传统异步电机相比,永磁同步电机具有以下特点。1高效率、高功率因数、节能用永磁体代替电励磁,不需要无功励磁电流,可以显著提高功率因数。定、转子同步,转子铁心没有铁耗,PMSM 的效率较电励磁同步电机和异步电机要高。而且,PMSM 在25%耀120%额定负载范围内均可以保持较高的功率因数和效率9,使电机在轻载运行时的节能效果更为显著,这样,在长期的使用中可以大幅度地节省电能。2动态响应快速、转速平稳PMSM 与异步电动机相比,具有较低的惯性,对于一定的电动机转矩具有较快的响应,即转矩/惯性比高10。3体积小、重量轻随着高性能永磁材料的不断应用,PMSM 的功率密度大大提高,与同容量异步电机相比,其体积和重量有较大的减少。4应用范围广、可靠性高,在医疗器械、化工、轻纺、仪器仪表等领域均获得应用。与直流电动机和电励磁同步电动机相比,永磁同步电动机没有电刷,简化了结构,提高了可靠性11。2.3 永磁同步电机数学模型当永磁同步电动机的定子通入三相交流电时,三相电流在定子绕组的电阻上产生电压降。由三相交流电产生的旋转电枢磁动势及建立的电枢磁场,一方面切割定子绕组,并在定子绕组中产生感应电动势;另一方面以电磁力拖动转子以同步转速旋转。电枢电流还会产生仅与定子绕组相交链的定子绕组漏磁通,并在定子绕组中产生感应漏电动势。此外,转子永磁体产生的磁场也以同步转速切割定子绕组。从而产生空载电动势。为了便于分析,在建立数学模型时,假设以下参数:忽略电动机的铁心饱和;不计电机中的涡流和磁滞损耗;定子和转子磁动势所产生的磁场沿定子内圆按正弦分布,即忽略磁场中所有的空间谐波;各相绕组对称,即各相绕组的匝数与电阻相同,各相轴线相互位移同样的电角度12。在分析同步电动机的数学模型时,常采用两相同步旋转(d,q)坐标系和两相静止(,)坐标系。图2-2给出永磁同步电动机在(d,q)旋转坐标系下的数学模型。(1) 定子电压方程为: (2-1) (2-2)式中:r为定子绕组电阻;p为微分算子,p=d/dt ;、为定子电流;、为定子电压;、分别为磁链在d,q轴上的分量;为转子角速度(=;为电动机极对数。(2) 定子磁链方程为: (2-3) (2-4)式中:为转子磁链。(3) 电磁转矩为: (2-5) (4)电动机的运动方程: (2-6)式中:J为电机的转动惯量。若电动机为隐极电动机,则,选取、及电动机机械角速度为状态变量,由此可得永磁同步电动机的状态方程式为: (2-7)由式(2-7)可见,三相永磁同步电动机是一个多变量系统,而且、之间存在非线性耦合关系,要想实现对三相永磁同步电机的高性能控制,是一个颇具挑战性的课题。图2-2 定子、转子参考坐标系3 永磁同步电机控制策略任何电动机的电磁转矩都是由主磁场和电枢磁场相互作用产生的。直流电动机的主磁场和电枢磁场在空间互差90°,因此可以独立调节;交流电机的主磁场和电枢磁场互不垂直,互相影响。因此,长期以来,交流电动机的转矩控制性能较差。经过长期研究,目前的交流电机控制有恒压频比控制、矢量控制、直接转矩控制和磁场定向控制等方案。3.1 恒压频比控制恒压频比控制是一种开环控制,最先被应用于异步电机的调速系统。一旦速度给定后,利用空间矢量脉宽调制转化为期望的输出电压Uout进行控制,使电动机以一定的转速运转。在一些动态性能要求不高的场所,由于开环变压变频控制方式简单,至今仍普遍用于一般的调速系统中,如风机、水泵,但因其依据电动机的稳态模型,无法获得理想的动态控制性能,因此必须依据电动机的动态数学模型。永磁同步电动机的动态数学模型为非线性、多变量,它含有与或的乘积项,因此要得到精确的动态控制性能,必须对和、解耦。近年来,研究各种非线性控制器用于解决永磁同步电动机的非线性特性。3.2 矢量控制高性能的交流调速系统需要现代控制理论的支持,对于交流电动机,目前使用最广泛的当属矢量控制方案。矢量控制也称磁场定向控制,自1971年德国西门子公司FBlaschke提出矢量控制原理,该控制方案就倍受瞩目,已经作为一种基本的原理和方法被普遍地采用13。它的基本思想是根据直流电机和交流电机在产生转矩的基本原理上的相似性,经过一定的数学变换或坐标变换,使二者的电路方程发生联系,然后用模拟直流电机控制方法对交流电动机进行磁场和转矩的分别控制,力图改善异步电动机的转矩控制特性,使之具有和直流机相似的特点。因此矢量控制的关键在于对定子电流幅值和空间位置(频率和相位)的控制。矢量控制的目的是改善转矩控制性能,最终的实施是对、的控制。由于定子侧的物理量都是交流量,其空间矢量在空间以同步转速旋转,因此调节、控制和计算都不方便。需借助复杂的坐标变换进行矢量控制,而且对电动机参数的依赖性很大,难以保证完全解耦,使控制效果大打折扣。矢量控制的优点在于调速范围宽,动态性能较好。不足之处是按转子磁链定向会受电动机参数变化的影响而失真,从而降低了系统的调速性能。解决方法是采用智能化调节器可以提高系统的调速性能和鲁棒性。3.2.1 矢量控制的组成和原理1) SVPWM模块。采用先进的调制算法以减少电流谐波、提高直流母线电压利用率;2) 电流读取模块。通过精密电阻或电流传感器测量定子电流;3) 转子速度/位置反馈模块。采用霍尔传感器或增量式光电编码器来准确获取转子位置和角速度信息,也可采用无传感器检测算法进行测量;4) PID控制模块;5) Clark、Park及Reverse Park变换模块。图3-1 矢量控制原理图1) 将电流读取模块测量的相电流和,经过Clark变换将其从三相静止坐标系变换到两相静止坐标系和; 2) 和与转子位置结合,经过Park变换从两相静止坐标系变换到两相旋转坐标系和; 3) 转子速度/位置反馈模块将测量的转子角速度参考转速行比较,并通过PI调节器产生交轴参考电流; 4) 交、直轴参考电流、与实际反馈的交、直轴电流、进行比较,取直轴参考电流为0。再经过PI调节器,转化为电压和;5) 电压和与检测到的转子角位置相结合进行反Park变换,变换为两相静止坐标系的电压和; 6) 电压和经过SVPWM模块调制为六路开关信号从而控制三相逆变器的开通与关断。 当变化时产生偏差,PI调节器输出设定值和实际交轴电流比较,得到偏差,用来调节实际交轴电流;如果直轴电流不为0,因为直轴电流给定值为0,产生直轴电流;以上两个偏差电流和经过PI调节器及反Park变换后为SVPWM调制算法提供两相电压、,从而进一步调节电压空间矢量,并通过逆变器来调节电机的转速,然后重复上述过程,实现了转速和电流的双闭环控制系统。3.2.2 矢量控制的控制方式1. 控制定子电流中只有交轴分量,且定子磁动势空间矢量与永磁体磁场空间矢量正交,电机的输出转矩与定子电流成正比。其性能类似于直流电机,控制系统简单,转矩性能好,可以获得很宽的调速范围,适用于高性能的数控机床、机器人等场合。电机运行功率因数低,电机和逆变器容量不能充分利用。2. 控制控制交、直轴电流分量,保持PMSM的功率因数为1,在条件下,电机的电磁转矩随电流的增加呈现先增加后减小的趋势。可以充分利用逆变器的容量。不足之处在于能够输出的最大转矩较小。3. 最大转矩/电流比控制也称为单位电流输出最大转矩的控制(最优转矩控制)。它是凸极PMSM用的较多的一种电流控制策略。当输出转矩一定时,逆变器输出电流最小,可以减小电机的铜耗。3.2.3 矢量控制的坐标变换1. Clarke(3s/2s)变换N3:三相绕组每相绕组匝数N2:两相绕组每相绕组匝数图3-2 Clarke(3s/2s)变换各相磁动势为有效匝数与电流的乘积,其相关空间矢量均位于有关相的坐标轴上设磁动势波形是正弦分布的,当三相总磁动势与相总磁动势与二相总磁动势相等时,两套绕组瞬时磁动势在轴上的投影都应相等,因此 (3-1)考虑变换前后总功率不变,可得匝数比应为 (3-2)可得 (3-3)坐标系变换矩阵: (3-4) (3-5)如果三相绕组是Y形联结不带零线,则有于是 (3-6) (3-7)2. Park(2s/2r)变换两个交流电流、和两个直流电流、,产生同样的以同步转速旋转的合成磁动势。d、q轴和矢量都以转速旋转,分量、的长短不变。a轴与d轴的夹角随时间变化。图3-3 Park(2s/2r)变换由图可见,、和、之间存在下列关系 (3-8)写成矩阵的形式,得 (3-9)坐标系变换矩阵 (3-10) (3-11)3. 电压空间矢量由三组六个开关(、)组成。由于与、与、与之间互为反向,即一个接通,一个断开,所以三组开关有 种开关组合。图3-4 PWM逆变器模型若规定三相负载的某一相与“+”极接通时,该相的开关状态为“1”态;反之,与“-”极接通时,为“0”态。则有8种可能的开关组合。表3-1 8种可能的开关组合状态01234567010101010011001100001111逆变器7种不同的电压状态:电压状态“1”至“6”零电压关状态“0”和“7” 逆变器的输出电压用空间电压矢量来表示,依次表示为 (3-12) 逆变器非零电压矢量输出时的相电压波形、幅值和电压状态的对应关系图、电压状态和开关状态均以6个状态为一个周期,相电压幅值为两种: 和。 图3-5 逆变器各量对应关系图把逆变器的7个输出电压状态放入空间平面内,形成7个离散的电压空间矢量。每两个工作电压空间矢量在空间的位置相隔60º角度,6个工作电压空间矢量的顶点构成正六边形。图3-6 6个工作电压空间矢量的顶点构成的正六边形选定定子坐标系中的与Park矢量复平面的实轴、其三相物理量Park的矢量为 (3-13)式中复系数旋转空间矢量的某个时刻在某轴线a、b、c轴上的投影就是该时刻该相物理量的瞬时值。若 三相负载的定子绕组接成星形,其输出电压的空间矢量Park矢量变换表达式为 (3-14)对于状态“1”Sabc=001 时;可知 (3-15) 则: (3-16) 电压空间矢量的结论:1) 逆变器六个工作电压状态给出了六个不同方向的电压空间矢量。它们周期性地顺序出现,相邻两个矢量之间相差60度;2) 电压空间矢量的幅值不变,都等于2ud/3;3) 因此六个电压空间矢量的顶点构成了正六边形的六个顶点;4) 六个电压空间矢量的顺序如下,它们依次沿逆时针方向旋转;5) 零电压状态7位于六边形中心。3.2.4 矢量控制的基本方程SM-PMSM的电压和磁链方程: (3-17) (3-18):定子相绕组:定子相绕组电感:定子相绕组互感:转子电角度:转子永磁磁链其中:磁链转矩方程: (3-19) (3-20)3.3 直接转矩控制直接转矩控制技术是用空间矢量的分析方法直接在定子坐标系下计算并控制交流电机的转矩,借助于双位模拟调节器产生信号,直接对逆变器的开关状态进行最佳控制,以获得转矩的高性能控制。矢量控制方案是一种有效的交流伺服电动机控制方案。但因其需要复杂的矢量旋转变换,而且电动机的机械常数低于电磁常数,所以不能迅速地响应矢量控制中的转矩。针对矢量控制的这一缺点,德国学者Depenbrock于上世纪80年代提出了一种具有快速转矩响应特性的控制方案,即直接转矩控制(DTC),在此之后越来越多的学者投入到永磁同步电机直接转矩控制的研究。它采取定子磁链定向的方法,利用离散的两点式控制直接对电动机的定子磁链和转矩进行调节,省掉了复杂的矢量变换,其控制思想新颖,控制结构简单,控制手段直接,信号处理的物理概念明确等优点14。DTC最早用于感应电动机,1997年L Zhong等人对DTC算法进行改造,将其用于永磁同步电动机控制。DTC方法实现磁链和转矩的双闭环控制。在得到电动机的磁链和转矩值后,即可对永磁同步电动机进行DTC。随着现代控制理论和智能控制理论的引入,涌现出许多基于模糊控制、神经网络控制、模糊神经网络控制、非线性控制、变结构控制的直接转矩控制系统,使直接转矩控制技术得到进一步改善和提高。直接转矩控制的目标是:通过选择适当的定子电压空间矢量,使定子磁链的运动轨迹为圆形,同时实现磁链模值和电磁转矩的跟踪控制,其基本原理如图3-7所示。在图3-7中,定子磁链和电磁转矩分别采用闭环控制,、分别为定子磁链模值和电磁转矩的给定信号,作为反馈信号使用。根据误差信号,转矩调节器输出转矩增、减控制信号;磁链调节器输出磁链增、减控制信号。开关表根据、;以及估计器输出的磁链扇区信号,选择正确的定子电压空间矢量,输出控制字给Sa、Sb、Sc变器。 图3-7 直接转矩控制系统的基本原理框图3.3.1 定子磁链控制直接转矩控制系统简称 DTC ( Direct Torque Control) 系统,是继矢量控制系统之后发展起来的另一种高动态性能的交流电动机变压变频调速系统。在它的转速环里面,利用转矩反馈直接控制电机的电磁转矩,因而得名。1. 工作原理:1) 转速正、反向和弱磁升速。2) 磁链给定信号由函数发生程序获得。3) 转速调节器ASR的输出作为转矩给定信号,弱磁时它还受到磁链给定信号的控制。4) 在转矩内环中,磁链对控制对象的影响相当于一种扰动作用,因而受到转矩内环的抑制,从而改造了转速子系统,使它少受磁链变化的影响。 2. 结构特点转速双闭环:1) ASR的输出作为电磁转矩的给定信号;2) 设置转矩控制内环,它可以抑制磁链变化对转速子系统的影响,从而使转速和磁链子系统实现了近似的解耦。转矩和磁链的控制器:用滞环控制器取代通常的PI调节器。3. 控制特点与VC系统一样,它也是分别控制电动机的转速和磁链,但在具体控制方法上,DTC系统与VC系统不同的特点是:1) 转矩和磁链的控制采用双位式砰-砰控制器,并在PWM逆变器中直接用这两个控制信号产生电压的SVPWM 波形,从而避开了将定子电流分解成转矩和磁链分量,省去了旋转变换和电流控制,简化了控制器的结构。 2) 选择定子磁链作为被控量,而不像VC系统中那样选择转子磁链,这样一来,计算磁链的模型可以不受转子参数变化的影响,提高了控制系统的鲁棒性。如果从数学模型推导按定子磁链控制的规律,显然要比按转子磁链定向时复杂,但是,由于采用了砰-砰控制,这种复杂性对控制器并没有影响。 3) 由于采用了直接转矩控制,在加减速或负载变化的动态过程中,可以获得快速的转矩响应,但必须注意限制过大的冲击电流,以免损坏功率开关器件,因此实际的转矩响应的快速性也是有限的。4. 控制规律和反馈模型除转矩和磁链砰-砰控制外,DTC系统的核心问题就是:1) 转矩和定子磁链反馈信号的计算模型;2) 如何根据两个砰-砰控制器的输出信号来选择电压空间矢量和逆变器的开关状态。5. 电压空间矢量和逆变器的开关状态的选择根据定子磁链给定和反馈信号进行砰-砰控制,按控制程序选取电压空间矢量的作用顺序和持续时间。1) 六边形的磁链轨迹控制:如果只要求正六边形的磁链轨迹,则逆变器的控制程序简单,主电路开关频率低,但定子磁链偏差较大;2) 圆形磁链轨迹控制:如果要逼近圆形磁链轨迹,则控制程序较复杂,主电路开关频率高,定子磁链接近恒定。该系统也可用于弱磁升速,这时要设计好*s = f (w*) 函数发生程序,以确定不同转速时的磁链给定值。 6. DTC系统存在的问题1) 由于采用砰-砰控制,实际转矩必然在上下限内脉动,而不是完全恒定的。2) 由于磁链计算采用了带积分环节的电压模型,积分初值、累积误差和定子电阻的变化都会影响磁链计算的准确度。 这两个问题的影响在低速时都比较显著,因而使DTC系统的调速范围受到限制。为了解决这些问题,许多学者做过不少的研究工作,使它们得到一定程度的改善,但并不能完全消除。 3.3.2 空间矢量控制1. 空间矢量在3.2.4节的第三条中已经做了详细介绍,这里不在重复说明。2. 矢量、磁链矢量定子的二个相电流产生相应的二相磁动势矢量,定子磁动势是真实的矢量,在电动机的实际空间中,它们的极性能容易地被确定。由十磁动势是线圈中电流和匝数的乘积,定子电流矢量可用磁动势除以每相匝数获得。这相当于对三相电流ia、ib、ic施加Park变换。除此之外,异步电动机的其它二相变量也表示成空间矢量 ,磁链矢量包括定子磁链矢量、气隙磁链矢量和转子磁链矢量。 3.4 直接转矩控制系统与矢量控制系统的比较DTC系统和VC系统都是已获实际应用的高性能交流调速系统。两者都采用转矩(转速)和磁链分别控制,这是符合异步电动机动态数学模型的需要的。但两者在控制性能上却各有千秋。 VC系统强调 Te 与r的解耦,有利于分别设计转速与磁链调节器;实行连续控制,可获得较宽的调速范围;但按r 定向受电动机转子参数变化的影响,降低了系统的鲁棒性。 DTC系统则实行Te 与s 砰-砰控制,避开了旋转坐标变换,简化了控制结构;控制定子磁链而不是转子磁链,不受转子参数变化的影响;但不可避免地产生转矩脉动,低速性能较差,调速范围受到限制。下表列出了两种系统的特点与性能的比较。表3-2 直接转矩控制系统和矢量控制系统特点与性能比较性能与