欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    数值插值方法 (2)课件.ppt

    • 资源ID:39349515       资源大小:3.58MB        全文页数:63页
    • 资源格式: PPT        下载积分:18金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要18金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    数值插值方法 (2)课件.ppt

    第1页,此课件共63页哦第2页,此课件共63页哦 5月月1日日 5月月31日日 6月月30日日日出日出 5:51 5:17 5:10日落日落 19:04 19:38 19:50第3页,此课件共63页哦6614616135143131211322102210210.)(.)(.aaaaaaaaa第4页,此课件共63页哦第5页,此课件共63页哦nnnnnnnnnyxaxaayxaxaayxaxaa101111000010第6页,此课件共63页哦njinjinnnnnnnxxxxxxxxxxxxxxV121211020010)(111),()(jixxji第7页,此课件共63页哦)()(0010101xxxxyyyxL001110101yxxxxyxxxxxL)(第8页,此课件共63页哦01010110 xxxxxlxxxxxl)(,)(11001)()()(yxlyxlxLkjkjxljk01)(的线性组合得到,其系数分别为的线性组合得到,其系数分别为y0,y1。即。即显然,显然,l0(x)及及l1(x)也是线性插值多项式,在节点也是线性插值多项式,在节点x0,x1上满足条件:上满足条件:l0(x0)=1,l0(x1)=0.l1(x0)=0,l1(x1)=1.称称l0(x)及及l1(x)为线性插值基函数。为线性插值基函数。(j,k=0,1)即即第9页,此课件共63页哦第10页,此课件共63页哦kjkjxljk01)()()(210 xxxxAxl)(12010 xxxxA)()()(2010210 xxxxxxxxxl故故第11页,此课件共63页哦)()()(2101201xxxxxxxxxl)()()(1202102xxxxxxxxxl2120210121012002010212yxxxxxxxxyxxxxxxxxyxxxxxxxxxL)()()()()()()(同理同理第12页,此课件共63页哦416,39,24734942499)(1xxxL6251347537952771.)()()(L4)916)(416()97)(47(3)169)(49()167)(47(2)164)(94()167)(97()7(72L6286.2)6458.27(取取x0=4,x1=9,x2=16(2)抛物插值:抛物插值:第13页,此课件共63页哦kjkjxljk01)(第14页,此课件共63页哦Lxlx ylx ylx ynnn()()()()0011nkiiikikxxxxxl0)()()()()()()()()()(110110nkkkkkknkkkxxxxxxxxxxxxxxxxxl第15页,此课件共63页哦)()!1()()()()(1)1(xnfxLxfxRnnnn,ba)()()(101nnxxxxxxx三、插值余项与误差估计三、插值余项与误差估计第16页,此课件共63页哦)()()(xLxfxRnn上显然在插值节点为),1,0(nixi)()()(iniinxLxfxRni,1,0,0个零点上至少有在因此1,)(nbaxRn)()()(1xxKxRnn设)()()(101nnxxxxxxx为待定函数)(xK其中)()()()()(1xxKxLxfxRnnn证明:证明:因为第17页,此课件共63页哦)()()()(1xxKxLxfnn0)()()()()(1txKtLtftnn若引入辅助函数)(x则有0的区分与注意xt)(ix且)()()(1ininxxKxR0即个零点上至少有在区间若令因此,2,)(,nbatxxi,0)(xni,1,0nixi,2,1,0,0)(也可微则可微因此若为多项式和由于)(,)(,)()(1txfxxLnn)()()()(1xxKxLxfnn)()()()(1ininixxKxLxf第18页,此课件共63页哦根据Rolle定理,个零点上有至少在区间1),()(nbat再由Rolle定理,个零点上有至少在区间nbat),()(依此类推阶导数为零的使得内至少有一个点在区间1)(,),(ntba0)()1(n)()1(tn)()()()()(1txKtLtftnn)()()()()1(1)1()1(txKtLtfnnnnn由于)()()()()()1(1)1()1()1(nnnnnnxKLf因此)!1()()()1(nxKfn0第19页,此课件共63页哦)!1()()()1(nfxKn)()()(1xxKxRnn)()!1()(1)1(xnfnn所以1)1()(maxnnbxaMxf)()!1()()1(1xnMxRnnn第20页,此课件共63页哦)()(21)()(21)(1021xxxxfxfxR ),(10 xx)()()(61)(2102xxxxxxfxR ),(20 xx第21页,此课件共63页哦例:225,169,144,)(三个节点为若xxf线性插值的余项为设LagrangexR)(1插值的余项为二次LagrangexR)(2解:.)175(截断误差近似值的线性和二次插值做试估计用fLagrangexxf21)(2341)(xxf2583)(xxf|)(|max2251692xfMx|)169(|f 41014.1|)(|max2251443xfMx|)144(|f 61051.1第22页,此课件共63页哦|)(|22xN|)225175)(169175(|300|)(|33xN|)225175)(169175)(144175(|9300|)(|1xR22!21NM3001014.121421071.1|)(|2xR33!31NM93001051.161631035.2误差更小二次插值比线性插值的用时在求从以上分析可知Lagrange175,第23页,此课件共63页哦高次插值的病态性质:高次插值的病态性质:对于一个确定的区间,如果插值节点之间的距离较小,对于一个确定的区间,如果插值节点之间的距离较小,自然插值节点就增多,如果用一个多项式插值,自然次自然插值节点就增多,如果用一个多项式插值,自然次数就会升高,也就是说要用高次多项式插值。数就会升高,也就是说要用高次多项式插值。但是否次数越高,插值多项式的逼近效果越好呢但是否次数越高,插值多项式的逼近效果越好呢?20世纪初,世纪初,Runge就给出了一个等距节点插值多项就给出了一个等距节点插值多项式不收敛的例子。式不收敛的例子。第24页,此课件共63页哦211)(xxf5 10(0,1,)kkxknn 1201()1()1()()nnnjjjnjxL xxxxx1/211()2nnnxxx1/255nxn第25页,此课件共63页哦20.1379310.759615-0.6216844 0.066390-0.3568260.42321660.0544630.607879-0.55341680.049651-0.8310170.880668100.0470591.578721-1.531662120.045440-2.7550002.800440140.0443345.332743-5.288409160.043530-10.17386710.217397180.04292020.123671-20.080751200.042440-39.95244939.994889n1/2()nf x1/2()nnLx1/2()nR x下表列出了下表列出了n=2,4,20的的Ln(xn-1/2)和和R(xn-1/2)的值:的值:第26页,此课件共63页哦第27页,此课件共63页哦取取xk=-5+k 计算计算:f(xk)(k=0,1,10)构造构造L10(x).取取:tk=-5+0.05k (k=0,1,200),计算计算:L10(tk)-5-4-3-2-1012345-0.500.511.52L10(t)f(t)f(x)第28页,此课件共63页哦x=-5:5;y=1./(1+x.2);t=-5:0.05:5;y1=1./(1+t.2);n=length(t);for i=1:n z=t(i);s=0;for k=1:11 Lk=1;u=x(k);for j=1:11 if j=k,Lk=Lk*(z-x(j)/(u-x(j);end end s=s+Lk*y(k);end y2(i)=s;endplot(x,y,ko,t,y1,t,y2,r)第29页,此课件共63页哦)()()(11)(1xlyxlyxLkkkkk11kkkkxxxxykkkkxxxxy11第30页,此课件共63页哦)(1xLnnnxxxxLxxxxLxxxxL1)1(121)1(110)0(1)()()(iiyxL)(1第31页,此课件共63页哦为插值点设*xx 1*kkxxx若*)(*1xLy 则*)()(1xLk11*kkkkxxxxykkkkxxxxy11*0*xx 若*)(*1xLy 取*)()0(1xL1010*xxxxy0101*xxxxynxx*若*)(*1xLy 取*)()1(1xLnnnnnxxxxy11*11*nnnnxxxxy内插外插外插第32页,此课件共63页哦-4-3-2-101234-1-0.8-0.6-0.4-0.200.20.40.60.81-4-3-2-101234-1-0.8-0.6-0.4-0.200.20.40.60.81-4-3-2-101234-1-0.8-0.6-0.4-0.200.20.40.60.81-4-3-2-101234-1-0.8-0.6-0.4-0.200.20.40.60.81-4-3-2-101234-1-0.8-0.6-0.4-0.200.20.40.60.81的图象分段线性插值)(1xLy 的一条折线实际上是连接点niyxkk,1,0,),()()(lim10 xfxLh上连续在若,)(baxf第33页,此课件共63页哦)()!1()(1)1(xnfnn)()()(xLxfxRnn)()()(11xLxfxR)()()(1xLxfk)(2)(1 kkxxxxf有关与且xxxxkk,1|)(|max|)(|max21)(11 kkkbxabxaxxxxxfxR224121hM 2281hM第34页,此课件共63页哦)()()()(1111)(2xlyxlyxlyxLkkkkkkk)()(11111kkkkkkkxxxxxxxxy1,2,1nk)()(2xLk)()(1111kkkkkkkxxxxxxxxy)()(11111kkkkkkkxxxxxxxxy第35页,此课件共63页哦)()!1()(1)1(xnfnn)()()(xLxfxRnn)()()(22xLxfxR)()()(2xLxfk)()(6)(11 kkkxxxxxxf有关与且xxxxkk,11|)(|2xR|)()(|max|)(|max611111 kkkkxxxbxaxxxxxxxfkk3393261hM 33273hM由于那么分段二次插值L2(x)的余项为:第36页,此课件共63页哦,次插值用分段线性、二处的近似值在求)(1.1,98.0,75.0,42.0,36.0)(xxf18885.187335.069675.057815.041075.030163.005.180.065.055.040.030.0543210iiyxi在各节点处的数据为设)(xf例:)()(1xLk11kkkkxxxxykkkkxxxxy11解:(1).分段线性Lagrange插值的公式为1,1,0nk第37页,此课件共63页哦)36.0()0(1L4.03.04.036.030163.03.04.03.036.041075.036711.0)42.0()1(1L55.04.055.042.041075.04.055.04.042.057815.043307.0)75.0()3(1L81448.0)98.0()4(1L10051.1)1.1()4(1L05.18.005.11.187335.08.005.18.01.118885.125195.1)36.0(f)42.0(f)75.0(f)98.0(f)1.1(f同理第38页,此课件共63页哦)()(11111kkkkkkkxxxxxxxxy1,2,1nk)()(2xLk)()(1111kkkkkkkxxxxxxxxy)()(11111kkkkkkkxxxxxxxxy(2).分段二次Lagrange插值的公式为36686.0)()36.0)(36.0(2010210 xxxxxxy)36.0()1(2L)()36.0)(36.0(2101201xxxxxxy)()36.0)(36.0(1202102xxxxxxy)36.0(f第39页,此课件共63页哦43281.0)()42.0)(42.0(2010210 xxxxxxy)42.0()1(2L)()42.0)(42.0(2101201xxxxxxy)()42.0)(42.0(1202102xxxxxxy81343.0)()75.0)(75.0(5343543xxxxxxy)75.0()4(2L)()75.0)(75.0(5454534xxxxxxy)()75.0)(75.0(4535435xxxxxxy)42.0(f)75.0(f)98.0(f)1.1(f09784.1)98.0()4(2L25513.1)1.1()4(2L第40页,此课件共63页哦)(),(jjjjxfmxfyjjjjmxHyxH)(,)(第41页,此课件共63页哦12121012)(nnnxaxaaxH第42页,此课件共63页哦003)(yxH113)(yxH003)(yxH113)(yxH第43页,此课件共63页哦)()()()()(110011003xyxyxyxyxH)()()()()(110011003xyxyxyxyxH1)(00 x0)(00 x1)(00 x0)(10 x0)(01x1)(11x0)(10 x0)(01x0)(11x0)(00 x0)(10 x0)(01 x0)(11 x0)(10 x0)(01 x1)(11 x第44页,此课件共63页哦)()()(210baxxxx1)(00 x0)(00 x310)(2xxa3100210)(2)(1xxxxxb)()()(210baxxxx310021031021)(2)(1)(2)(xxxxxxxxxx1010021021221)()(xxxxxxxxxx第45页,此课件共63页哦2101010021)(xxxxxxxxx)()(21(201xlxlLagrange插值基函数)()(21()(2101xlxlx201010121xxxxxxxx)()()(2000 xlxxx21010)(xxxxxx)()()(2111xlxxx20101)(xxxxxx第46页,此课件共63页哦)()()()()(110011003xyxyxyxyxH)()()()()(110011003xyxyxyxyxH101121xxxxy2010 xxxx00 xxy2101xxxx2010 xxxx11xxy010021xxxxy2101xxxx)()(21(2010 xlxly)()(21(2101xlxly)()(2000 xlxxy)()(2111xlxxy第47页,此课件共63页哦二、三次二、三次Hermite插值的余项插值的余项设设f(x)在区间在区间a,b上有定义,上有定义,f(x)在在(a,b)内有内有4阶阶导数,导数,H3(x)是满足插值条件是满足插值条件jjjjmxHyxH)(,)(的三次的三次Hermite插值函数,则对任意的插值函数,则对任意的xa,b,H(x)的插值余项为的插值余项为2120)4(33)()(!4)()()()(xxxxfxHxfxR)()()(33xHxfxR0)()()(33iiixHxfxR0)()()(33iiixHxfxR10 xx由由(i=0,1)第48页,此课件共63页哦21203)()()(xxxxxKxR21203)()()()()(xtxtxKtHtft0)()()()()(21203xxxxxKxHxfxiiiii0)()()()()(21203xxxxxKxHxfxi=0,10)()4(第49页,此课件共63页哦0)(!4)()()4()4(xKf!4)()()4(fxK2120)4(3)()(!4)()(xxxxfxR10 xx第50页,此课件共63页哦例1.1)2(,0)1(21)(3)2(,2)1(21)(ffxfffxf处的导数值为,在节点处的函数值为,在节点已知.7.1,5.1)(,)(处的函数值在及的两点三次插值多项式求xxfxf解:2,110 xx3,210yy1,010yy)()()()()(110011003xyxyxyxyxH101121xxxxy2010 xxxx00 xxy2101xxxx2010 xxxx11xxy010021xxxxy2101xxxx第51页,此课件共63页哦)2(213x21x21x2 x)1(212x22x)(3xH91713323xxx)5.1(f)5.1(3H625.2)7.1(f)7.1(3H931.2作为多项式插值,三次已是较高的次数,次数再高就有作为多项式插值,三次已是较高的次数,次数再高就有可能发生可能发生Runge现象,因此,对有现象,因此,对有n+1个节点的插值问题,个节点的插值问题,我们可以使用分段两点三次我们可以使用分段两点三次Hermite插值。插值。第52页,此课件共63页哦1111)(,)(,)(,)(jjjjjjjjmxHmxHyxHyxH)()()()()(1111xmxmxyxyxHjjjjjjjjn三、分段三次三、分段三次Hermite插值插值第53页,此课件共63页哦2111)(21()(jjjjjjjxxxxxxxxx21111)(21()(jjjjjjjxxxxxxxxx211)()(jjjjjxxxxxxx2111)()(jjjjjxxxxxxx第54页,此课件共63页哦第55页,此课件共63页哦,)(,)(,)()(1212101nnnxxxxSxxxxSxxxxSxS第56页,此课件共63页哦第57页,此课件共63页哦三次样条插值多项式的确定:三次样条插值多项式的确定:jjjjjdxcxbxaxS23)()0()0(jjxSxS)0()0(jjxSxS)0()0(jjxSxS第58页,此课件共63页哦可得可得3n-2个方程,又由条件个方程,又由条件(3)jjyxS)(0)()(0 nxSxS)()(),()(00nnxfxSxfxSj=1,2,n得得n+1个方程,共可得个方程,共可得4n-2个方程。个方程。要确定要确定4n个未知数,还差两个方程。个未知数,还差两个方程。通常在端点通常在端点x0=a,xn=b处各附加一个条件,称处各附加一个条件,称边界边界条件条件,常见有三种:,常见有三种:(1)自然边界条件:自然边界条件:(2)固定边界条件:固定边界条件:)()(),()(00nnxSxSxSxS 自然样条(最光滑)(3)周期边界条件:周期边界条件:共共4n个方程,可唯一地确定个方程,可唯一地确定4n个未知数。个未知数。第59页,此课件共63页哦 1,00,1)(222232112131xdxcxbxaxdxcxbxaxS11111dcba01d02d12222dcba第60页,此课件共63页哦21cc 21bb 02611ba02622ba023,2121212121ddccbbaa 1,023210,12321)(2323xxxxxxxS第61页,此课件共63页哦本章作业第62页,此课件共63页哦第63页,此课件共63页哦

    注意事项

    本文(数值插值方法 (2)课件.ppt)为本站会员(石***)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开