高考卷 05高考理科数学(浙江卷)试题及答案.doc
-
资源ID:3946092
资源大小:697.50KB
全文页数:11页
- 资源格式: DOC
下载积分:7金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
高考卷 05高考理科数学(浙江卷)试题及答案.doc
2005年高考理科数学浙江卷试题及答案第卷 (选择题 共60分) 一、选择题:本大题共10小题,每小题5分,共50分在每小题给出的四个选项中,只有一项是符合题目要求的1( )(A) 2 (B) 4 (C) (D)02点(1,1)到直线xy10的距离是( )(A) (B) (C) (D)3设f(x),则ff()( )(A) (B) (C) (D) 4在复平面内,复数(1i)2对应的点位于( )(A) 第一象限 (B) 第二象限 (C) 第三象限 (D)第四象限5在(1x)5(1x)6(1x)7(1x)8的展开式中,含x3的项的系数是( )(A) 74 (B) 121 (C) 74 (D) 1216设、 为两个不同的平面,l、m为两条不同的直线,且l,m,有如下的两个命题:若,则lm;若lm,则那么(A) 是真命题,是假命题 (B) 是假命题,是真命题(C) 都是真命题 (D) 都是假命题7设集合,则A所表示的平面区域(不含边界的阴影部分)是( ) (A) (B) (C) (D)8已知k4,则函数ycos2xk(cosx1)的最小值是( )(A) 1 (B) 1 (C) 2k1 (D) 2k19设f(n)2n1(nN),P1,2,3,4,5,Q3,4,5,6,7,记nN|f(n)P,nN|f(n)Q,则()()( )(A) 0,3 (B)1,2 (C) (3,4,5 (D)1,2,6,710已知向量,|1,对任意tR,恒有|t|,则(A) (B) () (C) () (D) ()()第卷 (非选择题 共100分)二、填空题:本大题共4小题,每小题4分,共16分把答案填在答题卡的相应位置11函数y(xR,且x2)的反函数是_12设M、N是直角梯形ABCD两腰的中点,DEAB于E(如图)现将ADE沿DE折起,使二面角ADEB为45,此时点A在平面BCDE内的射影恰为点B,则M、N的连线与AE所成角的大小等于_13过双曲线(a0,b0)的左焦点且垂直于x轴的直线与双曲线相交于M、N两点,以MN为直径的圆恰好过双曲线的右顶点,则双曲线的离心率等于_14从集合O,P,Q,R,S与0,1,2,3,4,5,6,7,8,9中各任取2个元素排成一排(字母和数字均不能重复)每排中字母O,Q和数字0至多只能出现一个的不同排法种数是_(用数字作答)三、解答题:本大题共6小题,每小题14分,共84分解答应写出文字说明,证明过程或演算步骤 15已知函数f(x)sin2xsinxcosx () 求f()的值; () 设(0,),f(),求sin的值 16已知函数f(x)和g(x)的图象关于原点对称,且f(x)x22x ()求函数g(x)的解析式; ()解不等式g(x)f(x)|x1| 17如图,已知椭圆的中心在坐标原点,焦点在x轴上,长轴的长为4,左准线与x轴的交点为M,|MA1|A1F1|21 ()求椭圆的方程; ()若直线:xm(|m|1),P为上的动点,使最大的点P记为Q,求点Q的坐标(用m表示)18如图,在三棱锥PABC中,ABBC,ABBCkPA,点O、D分别是AC、PC的中点,OP底面ABC ()当k时,求直线PA与平面PBC所成角的大小; () 当k取何值时,O在平面PBC内的射影恰好为PBC的重心?19袋子A和B中装有若干个均匀的红球和白球,从A中摸出一个红球的概率是,从B中摸出一个红球的概率为p () 从A中有放回地摸球,每次摸出一个,有3次摸到红球即停止(i)求恰好摸5次停止的概率;(ii)记5次之内(含5次)摸到红球的次数为,求随机变量的分布率及数学期望E () 若A、B两个袋子中的球数之比为12,将A、B中的球装在一起后,从中摸出一个红球的概率是,求p的值 20设点(,0),和抛物线:yx2an xbn(nN*),其中an24n,由以下方法得到: x11,点P2(x2,2)在抛物线C1:yx2a1xb1上,点A1(x1,0)到P2的距离是A1到C1上点的最短距离,点在抛物线:yx2an xbn上,点(,0)到的距离是 到 上点的最短距离 ()求x2及C1的方程 ()证明是等差数列2005年高考理科数学浙江卷试题及答案参考答案一、选择题:本题考查基本知识和基本运算每小题5分,满分50分(1)C (2)D (3)B (4)B (5)D (6)D (7)A (8)A (9)A (10)C二、填空题:本题考查基本知识和基本运算每小题4分,满分16分(11);(12);(13)2;(14)8424三、解答题:(15)本题主要考查三角函数的诱导公式、倍角公式等基础知识和基本的运算能力满分14分解:(1),(2),解得故(16)本题主要考查函数图象的对称、中点坐标公式、解不等式等基础知识,以及运算和推理能力满分14分解:()设函数的图象上任意一点关于原点的对称点为,则点在函数的图象上()由当时,此时不等式无解当时,解得因此,原不等式的解集为(17)本题主要考查椭圆的几何性质、椭圆方程、两条直线的夹角,点的坐标等基础知识,考查解析几何的基本思想方法和综合解题能力满分14分解:()设椭圆方程为,半焦距为,则() 设,当时,;当时,只需求的最大值即可设直线的斜率,直线的斜率,当且仅当时,最大,(18)本题主要考查空间线面关系、空间向量的概念与运算等基础知识,同时考查空间想象能力和推理运算能力满分14分解:方法一:() O、D分别为AC、PC中点, (),又,PA与平面PBC所成的角的大小等于,()由()知,F是O在平面PBC内的射影D是PC的中点,若点F是的重心,则B,F,D三点共线,直线OB在平面PBC内的射影为直线BD,即反之,当时,三棱锥为正三棱锥,O在平面PBC内的射影为的重心方法二:,以O为原点,射线OP为非负z轴,建立空间直角坐标系(如图)设则,设,则()D为PC的中点,又,(),即,可求得平面PBC的法向量,设PA与平面PBC所成的角为,则,()的重心,又,即,反之,当时,三棱锥为正三棱锥,O在平面PBC内的射影为的重心(19)本题主要考查相互独立事件同时发生的概率和随机变量的分布列、数学期望等概念,同时考查学生的逻辑思维能力满分14分解:()(i)(ii)随机变量的取值为0,1,2,3,;由n次独立重复试验概率公式,得;(或)随机变量的分布列是0123P的数学期望是()设袋子A中有m个球,则袋子B中有2m个球由,得(20)本题主要考查二次函数的求导、导数的应用、等差数列、数学归纳法等基础知识,以及综合运用所学知识分析和解决问题的能力满分14分解:()由题意得,设点是上任意一点,则令则由题意得,即又在上,解得故的方程为()设点是上任意一点,则令则由题意得即又,即下面用数学归纳法证明,当时,等式成立;假设当时,等式成立,即,则当时,由知,又,即时,等式成立由知,等式对成立,故是等差数列