欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    将军饮马模型(终稿)(4页).docx

    • 资源ID:39481223       资源大小:480.67KB        全文页数:4页
    • 资源格式: DOCX        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    将军饮马模型(终稿)(4页).docx

    -将军饮马模型(终稿)-第 4 页将军饮马模型一、背景知识:【传说】早在古罗马时代,传说亚历山大城有一位精通数学和物理的学者,名叫海伦一天,一位罗马将军专程去拜访他,向他请教一个百思不得其解的问题将军每天从军营A出发,先到河边饮马,然后再去河岸同侧的军营B开会,应该怎样走才能使路程最短?这个问题的答案并不难,据说海伦略加思索就解决了它从此以后,这个被称为“将军饮马”的问题便流传至今【问题原型】将军饮马 造桥选址 费马点【涉及知识】两点之间线段最短,垂线段最短; 三角形两边三边关系; 轴对称 ;平移;【解题思路】找对称点,实现折转直二、将军饮马问题常见模型1.两定一动型:两定点到一动点的距离和最小例1:在定直线l上找一个动点P,使动点P到两个定点A与B的距离之和最小,即PA+PB最小.作法:连接AB,与直线l的交点Q,Q即为所要寻找的点,即当动点P跑到了点Q处,PA+PB最小,且最小值等于AB.原理:两点之间线段最短。证明:连接AB,与直线l的交点Q,P为直线l上任意一点,在PAB中,由三角形三边关系可知:AP+PBAB(当且仅当PQ重合时取)例2:在定直线l上找一个动点P,使动点P到两个定点A与B的距离之和最小,即PA+PB的和最小.关键:找对称点作法:作定点B关于定直线l的对称点C,连接AC,与直线l的交点Q即为所要寻找的点,即当动点P跑到了点Q处,PA+PB和最小,且最小值等于AC.原理:两点之间,线段最短证明:连接AC,与直线l的交点Q,P为直线l上任意一点,在PAC中,由三角形三边关系可知:AP+PCAC(当且仅当PQ重合时取)2.两动一定型例3:在MON的内部有一点A,在OM上找一点B,在ON上找一点C,使得BAC周长最短作法:作点A关于OM的对称点A,作点A关于ON的对称点A ,连接A A,与OM交于点B,与ON交于点C,连接AB,AC,ABC即为所求原理:两点之间,线段最短例4:在MON的内部有点A和点B,在OM上找一点C,在ON上找一点D,使得四边形ABCD周长最短作法:作点A关于OM的对称点A,作点B关于ON的对称点B ,连接A B,与OM交于点C,与ON交于点D,连接AC,BD,AB,四边形ABCD即为所求原理:两点之间,线段最短3. 两定两动型最值例5:已知A、B是两个定点,在定直线l上找两个动点M与N,且MN长度等于定长d(动点M位于动点N左侧),使AM+MN+NB的值最小.提示:存在定长的动点问题一定要考虑平移作法一:将点A向右平移长度d得到点A, 作A关于直线l的对称点A,连接AB,交直线l于点N,将点N向左平移长度d,得到点M。作法二:作点A关于直线l的对称点A1,将点A1向右平移长度d得到点A2,连接A2 B,交直线l于点Q,将点Q向左平移长度d,得到点Q。原理:两点之间,线段最短,最小值为AB+MN例6:(造桥选址)将军每日需骑马从军营出发,去河岸对侧的瞭望台观察敌情,已知河流的宽度为30米,请问,在何地修浮桥,可使得将军每日的行程最短?例6:直线l1l2,在直线l1上找一个点C,直线l2上找一个点D,使得CDl2, 且ACBDCD最短作法:将点A沿CD方向向下平移CD长度d至点A,连接AB,交l2于点D,过点D作DCl2于点C,连接AC则桥CD即为所求此时最小值为AB+CD原理:两点之间,线段最短,4. 垂线段最短型例7:在MON的内部有一点A,在OM上找一点B,在ON上找一点C,使得ABBC最短原理:垂线段最短点A是定点,OM,ON是定线,点B、点C是OM、ON上要找的点,是动点作法:作点A关于OM的对称点A,过点A作ACON,交OM于点B,B、C即为所求。例8:在定直线l上找一个动点P,使动点P到两个定点A与B的距离之差最小,即PA-PB最小.作法:连接AB,作AB的中垂线与l的交点,即为所求点P此时|PA-PB |=0原理:线段垂直平分线上的点到线段两端的距离相等例9:在定直线l上找一个动点C,使动点C到两个定点A与B的距离之差最大,即|PA-PB |最大作法:延长BA交l于点C,点C即为所求,即点B、A、C三点共线时,最大值为AB的长度。原理:三角形任意两边之差小于第三边例10:在定直线l上找一个动点C,使动点C到两个定点A与B的距离之差最大,即|PA-PB|最大作法:作点B关于l的对称点B,连接AB,交交l于点P即为所求,最大值为AB的长度。原理:三角形任意两边之差小于第三边典型例题 三角形1如图,在等边ABC中,AB = 6,ADBC,E是AC上的一点,M是AD上的一点,且AE = 2,求EM+EC的最小值解:点C关于直线AD的对称点是点B,连接BE,交AD于点M,则ME+MD最小,过点B作BHAC于点H,则EH = AH AE = 3 2 = 1,BH = = = 3在直角BHE中,BE = = = 2

    注意事项

    本文(将军饮马模型(终稿)(4页).docx)为本站会员(1595****071)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开