欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    新人教版六年级下册数学教案及反思5篇.doc

    • 资源ID:39607149       资源大小:123.50KB        全文页数:64页
    • 资源格式: DOC        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    新人教版六年级下册数学教案及反思5篇.doc

    -最新资料推荐- 新人教版六年级下册数学教案及反思5篇 写教案的同时,我们不断创新,自身能力一定都有所提高,出色的教案往往都是根据我们自己的教学目标来思考的,下面是职场范文网小编为您分享的新人教版六年级下册数学教案及反思5篇,感谢您的参阅。新人教版六年级下册数学教案及反思1一、游戏导入1、游戏:我们来玩个游戏轻松一下,游戏叫做我反 我反 我反反反。游戏规则:老师说一句话,请你说出与它相反意思的话。向上看(向下看)向前走200米(向后走200米)电梯上升15层(下降15层)。2、下面我们来难度大些的,看谁反应最快。我在银行存入了500元(取出了500元)。知识竞赛中,五(1)班得了20分(扣了20分)。10月份,学校小卖部赚了500元。(亏了500元)。零上10摄氏度(零下10摄氏度)。说明什么是相反意义的量(意义正好相反)3、谈话:周老师的一位朋友喜欢旅游, 11月下旬,他又打算去几个旅游城市走一走。我呢,特意帮他留意了一下这几个地方在未来某天的最低气温,以便做好出门前衣物的准备。下面就请大家一起和我走进天气预报。(天气预报片头)二、教学例11、认识温度计,理解用正负数来表示零上和零下的温度。课件出示地图:点击南京出示温度计和南京的图片。首先来看一下南京的气温。这里有个温度计。我们先来认识温度计,请大家仔细观察:这样的一小格表示多少摄氏度呢?5小格呢?10小格呢?B、现在你能看出南京是多少摄氏度吗? (是0。)你是怎么知道的?(那里有个0,表示0摄氏度)。(2)上海的气温:上海的最低气温是多少摄氏度呢?(在温度计上拨一拨)拨的时候是怎样想的呢?(在零刻度线以上四格)指出:上海的气温比0要高,是零上4摄氏度。(教师结合课件,突出上海的气温在零刻度线以上)。(3)了解首都北京的最低气温:北京又是多少摄氏度呢?与南京的0比起来,又怎样了呢?(比南京的0要低)你能用一个手势来表示它和0的关系吗?(对,北京的气温比0度低,是零下4摄氏度)你能在温度计上拨出来吗?(4)比较:“4”和“4”的意义相同吗?有什么不同?(不一样,一个在0以上,一个在0以下)。 上海的气温比0高,是零上4摄氏度,我们可以记作+4,读作正四摄氏度,写的时候先写一个正号(指出是正号不是加号,意义和读法都不同了)再写一个4(板书),大家跟我一起来比划一下。+4也可以直接写成4,把正号省略了。所以同学们所说的4也就是+4。(板书)负号能不能省略不写?为什么? 北京的气温比0低,是零下4摄氏度。我们可以用-4来表示零下4摄氏度(板书-4)。跟老师一起来读一下。写的时候可以先写一个负号(指出是负号不是减号)再写一个4就可以了,同桌互相比划一下。(5)小结:通过刚才对三个城市的温度的了解,我们知道记录温度时,以0为界线,用象+4或4这些数可以来表示零上温度,用-4这样的数可以表示零下温度。2、试一试:学生看温度计,写出各地的温度,并读一读。(写在卡片上)3、听一段中央台的天气预报,将你听到城市的最低和最高温度记录下来。4、小结:通过刚才的学习,我们得出:以零摄氏度为界线,零上温度用正几或直接用几来表示,零下温度用负几来表示。三、学习珠峰、吐鲁番盆地的海拔表达方法1、同学们你们知道吗?世界第一高峰珠穆朗玛峰从山脚到山顶,气温相差很大,这是和它的海拔高度有关的。最近经国家测绘局公布了珠峰的最新海拔高度。老师把有关网页带来了。(课件出现网页,上面有简单的文字介绍)。谁来读一读这段介绍。2、今天老师还带来一张珠穆朗玛峰的海拔图,请看。(课件动态地演示珠穆朗玛峰的海拔图)。从图上,你看懂了些什么?3、我们再来看新疆的吐鲁番盆地的海拔图。(动态演示吐鲁番盆地的海拔情况)。你又能从图上看懂些什么呢?(引导学生交流,回答珠穆朗玛峰比海平面高8844.43米;吐鲁番盆地比海平面低155米)。4、珠穆朗玛峰比海平面高,吐鲁番盆地比海平面低。大家再想想:你能用一种简单的方法来记录一下这两个地方的海拔吗?(1)交流:珠穆朗玛峰的海拔可以记作:+8844.43米或8844.43米。吐鲁番盆地的海拔可以记作:-155米。(板书)(2)小小结:以海平面为界线,+8844.43米或8844.43米这样的数可以表示海平面以上的高度,-155米这样的数可以表示海平面以下的高度。新人教版六年级下册数学教案及反思2一、学习目标(一)学习内容义务教育教科书数学(人教版)六年级下册第五单元第6869页的例1、2。“抽屉原理”是一类较为抽象和艰涩的数学问题,对全体学生而言具有一定的挑战性。为此,教材选择了一些常见的、熟悉的事物作为学习内容,经历将具体问题“数学化”的过程。(二)核心能力经历将具体问题“数学化”的过程,初步形成模型思想,发展抽象能力、推理能力和应用能力。(三)学习目标1.理解“鸽巢原理”的基本形式,并能初步运用“鸽巢原理”解决相关的实际问题或解释相关的现象。2.通过操作、观察、比较、说理等数学活动,经历鸽巢原理的形成活动,初步形成模型思想,发展抽象能力、推理能力和应用能力。(四)学习重点了解简单的鸽巢问题,理解“总有”和“至少”的含义。(五)学习难点运用“鸽巢原理”解决相关的实际问题或解释相关的现象。(六)配套资源实施资源:鸽巢原理名师教学课件二、学习设计(一)课堂设计1.谈话导入师:我这里有一副扑克牌,去掉了两张王牌,还剩52张,我请一位同学任意抽5张,不要让我看到你抽的是什么牌。但是老师却知道,其中至少有两张牌是同种花色的,再找一个学生再次证明。师:看来我两次都猜对了。谢谢你们。老师为什么能料事如神呢?到底有什么秘诀呢?学习完这节课以后大家就知道了。2.问题探究(1)呈现问题,引出探究出示例1:小明说“把4支铅笔放进3个笔筒里。不管怎么放,总有一个笔筒里至少放进2支铅笔”,他说得对吗?请说明理由。师:“总有”是什么意思?“至少”有2支是什么意思?学生自由发言。预设:一定有不少于两只,可能是2支,也可能是多于2支。就是不能少于2支。(2)体验探究,建立模型师:好的,看来大家已经理解题目的意思了。那么把4支铅笔放进3个笔筒里,可以怎样放?有几种不同的摆法?(我们用小棒和纸杯分别表示铅笔和笔筒)请大家摆摆看,看有什么发现?小组活动:学生思考,摆放。枚举法师:大部分同学都摆完了,谁能说说你们是怎么摆的。能不能边摆边给大家说。预设1:可以在第一个笔筒里放4支铅笔,其它两个空着。师:这种放法可以记作:(4,0,0),这4支铅笔一定要放在第一个笔筒里吗?(不一定,也可能放在其它笔筒里。)师:对,也可以记作(0,4,0)或者(0,0,4),但是,不管放在哪个笔筒里,总有一个笔筒里放进4支铅笔。还可以怎么放?预设2:第一个笔筒里放3支铅笔,第二个笔筒里放1支,第三个笔筒空着。师:这种放法可以记作(3,1,0)师:这3支铅笔一定要放在第一个笔筒里吗?(不一定)师:但是不管怎么放总有一个笔筒里放进3支铅笔。预设3:还可以在第一个笔筒里放2支,第二个笔筒里也放2支,第三个笔筒空着,记作(2,2,0)。师:这2支铅笔一定要放在第一个和第二个笔筒里吗?还可以怎么记?预设:也可能放在第三个笔筒里,可以记作(2,0,2)、(0,2,2)。预设4:还可以(2,1,1)或者(1,1,2)、(1,2,1)师:还有其它的放法吗?(没有了)师:在这几种不同的放法中,装得最多的那个笔筒里要么装有4支铅笔,要么装有3支,要么装有2支,还有装得更少的情况吗?(没有)师:这几种放法如果用一句话概括可以怎样说?(装得最多的笔筒里至少装2支。)师:装得最多的那个笔筒一定是第一个笔筒吗?(不一定,哪个笔筒都有可能。)【设计意图:在理解题目要求的基础上,通过操作活动,用画图和数的分解来表示上述问题的结果,更直观。再通过对“总有”“至少”的意思的单独说明,让学生更深入地理解“不管怎么放,总有一个铅笔盒里至少有2支铅笔”这句话。】假设法师:刚才我们研究了在所有放法中放得最多的笔筒里至少放进了几支铅笔。怎样能使这个放得最多的笔筒里尽可能的少放?预设:先把铅笔平均放,然后剩下的再放进其中一个笔筒里。师:“平均放”是什么意思?预设:先在每个笔筒里放一支铅笔,还剩一支铅笔,再随便放进一个笔筒里。师:为什么要先平均分?学生自由发言。引导小结:因为这样分,只分一次就能确定总有一个笔筒至少有几支笔了。师:好!先平均分,每个笔筒中放1支,余下1支,不管放在哪个笔筒里,一定会出现总有一个笔筒里至少有2支铅笔。师:这种思考方法其实是从最不利的情况来考虑,先平均分,每个笔筒里都放一支,就可以使放得较多的这个笔筒里的铅笔尽可能的少。这样,就能很快得出不管怎么放,总有一个笔筒里至少放进2支铅笔。我们可以用算式把这种想法表示出来。【设计意图:让学生自己通过观察比较得出“平均分”的方法,将解题经验上升为理论水平,进一步强化方法、理清思路。】(3)提升思维,建立模型加深感悟师:如果把5支笔放进4个笔筒里呢?大家讨论讨论。预设:5支铅笔放在4个笔筒里,先平均分,不管怎么放,总有一个笔筒里至少有2支铅笔。师:把7支笔放进6个笔筒里呢?还用摆吗?学生自由发言。师:把10支笔放进9个笔筒里呢?把100支笔放进99个笔筒里呢?师:你发现了什么?预设:我发现铅笔的支数比笔筒数多1,不管怎么放,总有一个笔筒里至少有2支铅笔。师:你的发现和他一样吗?学生自由发言。师:你们太了不起了!师:难道这个规律只有在铅笔的支数比笔筒数多1的情况下才成立吗?你认为还有什么情况?练一练:师:我们来看这道题“5只鸽子飞进了3个鸽笼,总有一个鸽笼至少飞进了2只鸽子,为什么?”师:说说你的想法。师:由此看来,只要分的物体比抽屉的数量多,就总有一个抽屉里至少放进2个物体。这就是最简单的鸽巢原理。【板书课题】介绍狄利克雷:师:鸽巢原理最先是由19世纪的德国数学家狄利克雷提出来应用于解决问题的,后来人们为了纪念他从这么平凡的事情中发现的规律,就把这个规律用他的名字命名,叫狄利克雷原理,也叫抽屉原理。建立模型出示例2:一位同学学完了“鸽巢原理”后说:把7本书放进3个抽屉里,不管怎么放,总有一个抽屉里至少有3本书。他说得对吗?学生独立思考、讨论后汇报:师:怎样用算式表示我们的想法呢?生答,板书如下。7÷32本1本(213)师:如果有10本书会怎么样能?会用算式表示吗?写下来。出示:把10本书放进3个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?10÷33本1本(314)师:观察板书你有什么发现?预设:我发现“总有一个抽屉里至少有2本”,只要用“商1”就可以得到。师:那如果把8本书放进3个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?请大家算一算。学生讨论,汇报:8÷3222138÷322224师:到底是“商1”还是“商余数”呢?谁的结论对呢?在小组里进行研究、讨论。师:认真观察,你认为“抽屉里至少有几本书”或“鸽笼里至少有几只鸽子”可能与什么有关?预设:我认为根“商”有关,只要用“商1”就可以得到。师:我们一起来看看是不是这样(引导学生再观察几个算式)啊!果然是只要用“商1”就可以了。引导总结:我们把要分的物体数量看做a,抽屉的个数看做n,如果满足【a÷nbc(c0)】,那么不管怎样放,总有一个抽屉里至少放(b1)本书。这就是抽屉原理的一般形式。鸽巢原理可以广泛地运用于生活中,来解决一些简单的实际问题。解决这类问题时要注意把谁看做“抽屉”。【设计意图:借助直观操作和假设法,将问题转化为“有余数的除法”的形式。可以使学生更好地理解“抽屉原理”的一般思路,经历将具体问题“数学化”的过程,初步形成模型思想,发展抽象能力、推理能力和应用能力。考查目标1、2】3.巩固练习(1)学习了“鸽巢原理”,我们再回到课前的“扑克牌”游戏,你现在能解释一下吗?(出示课件)学生思考,讨论。(2)第69页的做一做第1、2题。4.全课总结师:通过这节的学习,你有什么收获?小结:今天这节课我们一起研究了鸽巢原理,也叫抽屉原理,解决抽屉原理问题关键就是找准物体和抽屉,在一些复杂的题中,还需要我们去制造抽屉。(三)课时作业1.一个小组共有13名同学,其中至少有几名同学同一个月出生?答案:2名。解析:把112月看作是12个抽屉,13÷1211112【考查目标1、2】2.希望小学篮球兴趣小组的同学中,最大的12岁,最小的6岁,最少从中挑选几名学生,就一定能找到两个学生年龄相同。答案:8名。解析:从6岁到12岁一共有7个年龄段,即6岁、7岁、8岁、9岁、10岁、11岁、12岁。用718(名)【考查目标1、2】第二课时鸽巢原理中原区汝河新区小学师芳一、学习目标(一)学习内容义务教育教科书数学(人教版)六年级下册教材第70页例3。本例是“鸽巢原理”的具体应用,也是运用“鸽巢原理”进行逆向思维的一个典型例子。要解决这个问题,可以把两种“颜色”看成两个“抽屉”,“同色”就意味着“同一个抽屉”,这样就把“摸球问题”转化为“抽屉问题”。(二)核心能力在理解鸽巢原理的基础上,利用转化的思想,把新知转化为鸽巢问题,提高分析和推理的能力。(三)学习目标1进一步理解“抽屉原理”,运用“抽屉原理”进行逆向思维,解决实际问题,体会转化思想。2经历运用“抽屉原理”解决问题的过程,体验观察猜想,实践操作的学习方法,提高分析和推理的能力。(四)学习重点引导学生把具体问题转化为“抽屉原理”。(五)学习难点找出“抽屉”有几个,再应用“抽屉原理”进行反向推理。(六)配套资源实施资源:鸽巢原理名师教学课件二、学习设计(一)课堂设计1.情境导入师:同学们,你们喜欢魔术吗?今天老师给你们表演一个怎么样?看,这是一副扑克牌,去掉两张王牌,还剩下52张,请同学们任意挑出5张。(让5名学生抽牌)好,见证奇迹的时刻到了!你们手里的牌至少有2张是同花色的。师:神奇吧!你们想不想表演一个呢?师:现在老师这里还是刚才这副牌,请你抽牌,至少抽多少张牌才能保证至少有2张牌的点数相同呢?在学生抽的基础上揭示课题。教师:这节课我们学习利用“鸽巢原理”解决生活中的.实际问题。(板书课题:鸽巢原理)2.探究新知(1)学习例3猜想出示例3:盒子里有同样大小的红球和蓝球各4个,要想摸出的球一定有2个同色的,至少要摸出几个球?预设:2个、3个、5个验证师:我们的猜想是不是正确呢?我们可以用画一画、写一写的方法来说明理由,并把验证的过程进行整理。可以用表格进行整理,课件出示空白表格:学生独立思考填表,小组交流。全班汇报。汇报时,指名按猜测的不同情况逐一验证,说明理由,看看解决这个问题是否有规律可循。课件汇总,思考:从这里你能发现什么?教师:通过验证,说说你们得出什么结论。小结:盒子里有同样大小的红球和蓝球各4个。想要摸出的球一定有2个同色的,最少要摸3个球。小结师:为什么球的个数一定要比抽屉数多?而且是多1呢?预设:球有两种颜色,就是两个抽屉,从最不利的情况考虑摸2个球都不同色,就必须多摸一个,所以球一定要比抽屉数多1。其实摸4个球、5个球或者更多球,都能保证一定有2个球同色,但问题中要求摸的球数必须“至少”,所以摸3个球就够了。师:说得好!运用学过的知识、逆推的方法说明了“只要摸出的球比球的颜色种数至少多1,就能保证有2个球同色”。这一结论是正确的。板书:只要摸出的球比球的颜色种数至少多1,就能保证有2个球同色。或者说只要物体数比抽屉数至少多1,就能保证有一个抽屉至少放2个物体。(2)引导学生把具体问题转化成“抽屉原理”。师:生活中像这样的例子很多,我们不能总是猜测或动手试验,能不能把这道题与前面讲的“抽屉原理”联系起来思考呢?思考:摸球问题与“抽屉原理”有怎样的联系?应该把什么看成“抽屉”?有几个“抽屉”?要分别放的东西是什么?学生讨论,汇报结果,教师讲评:因为有红、蓝两种颜色的球,可以把两种“颜色”看成两个“抽屉”,“同色”就意味着“同一个抽屉”。这样把“摸球问题”转化成“抽屉问题”,即“只要分的物体比抽屉多1,就能保证有一个抽屉至少有2个同色球”。从最特殊的情况想起,假设两种颜色的球各拿了1个,也就是在两个抽屉里各拿了1个球,不管从哪个抽屉里再拿1个球,都有2个球是同色的。假设至少摸a个球,即a÷21b,当b1时,a就最小。所以一次至少应拿出1×213个球,就能保证有2个球同色。结论:要保证摸出的球有两个同色,摸出的球数至少要比抽屉数多1。3.巩固练习(1)完成教材第70页“做一做”第1题。(2)完成教材第70页“做一做”第2题。4.课堂总结师:这节课你学到了什么知识?谈谈你的收获和体验。(三)课时作业1.有黑色、白色、蓝色、红色手套各10只(不分左、右手),至少要拿出多少只(拿的时候不看颜色),才能在拿出的手套中,一定有两只不同颜色的手套?答案:5只。解析:4个颜色相当于4个抽屉,保证一定有两只不同的颜色,相当于分的物体个数比抽屉多1。【考查目标1、2】2.一个鱼缸里有很多条鱼,共有5个品种。至少捞出多少条鱼,才能保证有4条鱼的品种相同?答案:16条。解析:5个品种相当于5个抽屉,保证有4条鱼品种相同,所放物品的个数是:5×3116。【考查目标1、2】新人教版六年级下册数学教案及反思3设计说明“反比例”是在学生学习了“比和比例”和“正比例”的基础上进行教学的。本着“学生是学习的主体”的理念,在本节课的教学中,最大限度地为学生提供了自主探究的机会。1借助定义、实例,渗透函数思想。教学伊始,借助正比例的意义和生活实例,使学生进一步体会函数思想,充分理解成正比例关系的两种量的比值不变的特点,为学生探究成反比例关系的两种量之间的关系以及理解反比例的意义和特点奠定良好的基础。2借助具体情境,在观察、讨论中发现规律。教学中,通过具体情境,引导学生在观察、讨论中发现“把相同体积的水倒入底面积不同的杯子中,水面的高度不同”及“杯子的底面积×水的高度水的体积”这一规律,使学生通过自己的努力,归纳、概括出反比例的意义及特点。3借助已有的学习经验总结反比例关系式。因为正、反比例体现的都是两种相关联的量之间的关系,且正比例关系表达式学生已经掌握,所以在总结反比例关系表达式时,教师要引导学生根据已有的经验自己总结出反比例关系表达式,体验成功的喜悦。课前准备教师准备 PPT课件学生准备 玻璃杯 直尺 水 实验记录单教学过程复习引入1复习。课件出示:一个圆柱形水箱,底面积是0.78平方米,高是1.2米,这个水箱能装水多少立方米?(1)引导学生独立解决问题。(2)提问:你是根据什么公式进行计算的?预设生:圆柱的体积底面积×高。(3)师追问:圆柱的体积、底面积和高之间还有怎样的数量关系呢?在什么情况下其中的两种量成正比例关系?预设生1:底面积圆柱的体积÷高,高圆柱的体积÷底面积。生2:如果底面积一定,圆柱的体积与高就成正比例;如果高一定,圆柱的体积与底面积就成正比例。2引入课题。如果圆柱的体积一定,那么底面积与高又成怎样的关系呢?这就是本节课我们要学习的内容。(板书课题:反比例)设计意图:通过复习有关圆柱的体积问题以及列举圆柱的体积、底面积和高之间的关系,在培养学生思维完整性的同时,为新知的学习作铺垫。探究新知1在具体情境中初步感知成反比例关系的量。(1)课件出示教材47页例2,引导学生结合问题进行观察。师:观察情境图,理解图意后,观察下表,先一行一行地观察,再一列一列地观察,并思考下面的问题。杯子的底面积与水的高度的变化情况如下表。杯子的底面积/cm21015203060水的高度/cm302015105表中有哪两种量?水的高度是怎样随着杯子底面积的大小变化而变化的?相对应的杯子的底面积与水的高度的乘积分别是多少?(2)学生思考后在小组内交流。(3)全班交流。预设生1:有杯子的底面积和水的高度这两种量。生2:杯子的底面积增大,水的高度降低;杯子的底面积减小,水的高度升高。生3:相对应的杯子的底面积与水的高度的乘积都是300,是一定的,也就是杯子的底面积×水的高度水的体积(一定)。(4)明确什么是成反比例的量。因为水的体积一定,所以水的高度随着杯子的底面积的变化而变化。杯子的底面积增大,水的高度反而降低;杯子的底面积减小,水的高度反而升高。但是无论怎样变化,杯子的底面积和水的高度的乘积总是一定的,所以我们就把杯子的底面积和水的高度这两种量叫做成反比例的量,它们的关系叫做反比例关系。新人教版六年级下册数学教案及反思4教学内容:人教版义务教育课程标准实验教科书数学六年级下册第24页例1、例2。教学目标:1引导学生在熟悉的生活情境中初步认识负数,能正确地读、写正数和负数;知道0不是正数也不是负数。2使学生初步学会用负数表示一些日常生活中的实际问题,体验数学与生活的联系。3结合负数的历史,对学生进行爱国主义教育;培养学生良好的数学情感和数学态度。教学重、难点:负数的意义。教学设备:班班通教学过程:一、谈话交流谈话:同学们,刚才一上课大家就做了一组相反的动作,是什么?(起立、坐下。)今天的数学课我们就从这个话题聊起。(板书:相反。)我们周围有很多的自然和社会现象中都存在着相反的情况,请看屏幕:(播放图片。)太阳每天从东方升起,西方落下;公交车的站点有人上车和下车;繁华的街市上有买也有卖;激烈的赛场上有输也有赢你能举出一些这样的现象吗?二、教学新知1表示相反意义的量。(1)引入实例。谈话:如果沿着刚才的话题继续“聊”下去的话,就很自然地走进数学,我们一起来看几个例子(出示)。 六年级上学期转来6人,本学期转走6人。 张阿姨做生意,二月份盈利1500元,三月份亏损200元。 与标准体重比,小明重了2.5千克,小华轻了 1.8千克。 一个蓄水池夏季水位上升米,冬季水位下降米。指出:这些相反的词语和具体的数量结合起来,就成了一组组“相反意义的量”。(补充板书:相反意义的量。)(2)尝试。怎样用数学方式来表示这些相反意义的量呢?请同学们选择一例,试着写出表示方法。(3)展示交流。2认识正、负数。(1)引入正、负数。谈话:刚才,有同学在6的前面写上“”表示转来6人,添上“”表示转走6人(板书:6 6),这种表示方法和数学上是完全一致的。介绍:像“6”这样的数叫负数(板书:负数);这个数读作:负六。“”,在这里有了新的意义和作用,叫“负号”。“”是正号。像“6”是一个正数,读作:正六。我们可以在6的前面加上“”,也可以省略不写(板书:6)。其实,过去我们认识的很多数都是正数。(2)试一试。请你用正、负数来表示出其它几组相反意义的量。写完后,交流、检查。3联系实际,加深认识。(1)说一说存折上的数各表示什么?(教学例2。)(2)联系生活实际举出一组相反意义的量,并用正、负数来表示。 同桌交流。 全班交流。根据学生发言板书。这样的正、负数能写完吗?(板书: )强调指出:像过去我们熟悉的这些整数、小数、分数等都是正数,也叫正整数、正小数、正分数;在它们的前面添上负号,就成了负整数、负小数、负分数,统称负数。4进一步认识“0”。(1)看一看、读一读。谈话:接下来,我们一起来看屏幕:这是去年12月份某天,部分城市的气温情况(出示)。哈尔滨: 15 3 北京: 5 5 深圳: 12 23 温度中有正数也有负数,请把负数读出来。(2)找一找、说一说。我们来看首都北京当天的温度,“5 ”读作:“负五摄氏度”或“负五度”,表示零下5度;5 又表示什么?你能在温度计上找出这两个温度所在的刻度吗?(出示温度计,没有刻度数)为什么?现在你能很快找出来吗?(给出温度计的刻度数,生到前面指。)说一说,你怎么这么快就找到了?(配合演示:先找0,在它的下面找5,在它的上面找5。)你能很快找到12 、3 吗?(3)提升认识。请学生观察温度计,说一说有什么发现?在学生发言的基础上,强调:以0为分界点,零上温度都用正数来表示,零下温度都用负数来表示。(或负数都表示零下温度,正数都表示零上温度。)“0”是正数,还是负数呢?在学生发言的基础上,强调:“0”作为正数和负数的分界点,它既不是正数也不是负数。(4)总结归纳。如果过去我们所认识的数只分为正数和0的话,那么今天我们可以对“数”进行重新分类:(完善板书。)5练一练。读一读,填一填。(练习一第1题。)6出示课题。同学们,想一想,今天你学习了什么新知识?认识了哪位新朋友?你能为今天的数学课定一个课题吗?根据学生的回答总结本节课所学内容,并选择板书课题:认识负数。7负数的历史。(1)介绍。其实,负数的产生和发展有着悠久的历史,我们一起来了解一下(配音播放):“中国是世界上最早认识和运用负数的国家,早在20xx多年前,我国古代数学著作九章算术中对正数和负数就有了记载。魏朝数学家刘徽在该书的注文中则更进一步地概括了正、负数的意义:两算得失相反,要令正负以名之。古代用算筹表示数,这句话的意思是:两种得失相反的数,分别叫做正数和负数。并且规定用红色算筹表示正数,黑色算筹表示负数。由于记录时换色不方便,到了十三世纪,数学家还创造了在数字上面画斜杠来表示负数的方法。国外对负数的认识经历了曲折的过程,并且也出现了各种表示负数的形式,直到20世纪初,才形成了现在的形式。但比中国晚了数百年!”(2)交流。简单了解了负数的历史,你有什么感受?三、练习应用今天,负数在我们的生产和生活中依然有着广泛的用途。让我们就一起走进生活,感受数与生活的密切联系。逐一出示:1表示海拔高度。(“做一做”第2题。)通常,我们规定海平面的海拔高度为0米,珠穆朗玛峰比海平面高8844.43米,可以记作_;吐鲁番盆地大约比海平面低155米,它的海拔高度应记作_。2表示温度。(练习一第2题。)月球表面白天的平均温度是零上126,记作_, 夜间的平均温度为零下150,记作_。3(出示电梯按钮图)小红的家在五楼,储藏室在地下一楼。如果她要回家,按哪个按钮?如果到储藏室取东西呢?4表示时间。(练习一第3题。)5 “净含量:10±0.1g”表示什么意思?四、总结延伸1学生交流收获。2总结。简要、具体地评价学生的收获,并强调:关于负数,生活中还有更广泛的应用;走进负数,还有更多的知识等待我们去探索,相信同学们在今后的生活和学习中会有更多的收获。新人教版六年级下册数学教案及反思5教学内容:例5体现了找规律对解决问题的重要性。这里的规律的一般化表述是:以平面上几个点为端点,可以连多少条线段。这种以几何形态显现的问题,便于学生动手操作,通过画图,由简到繁,发现规律。解决这类问题的常用策略是,由最简单的情况入手,找出规律,以简驭繁。这也是数学问题解决比较常用的策略之一。例6以选送节目为题材,讨论怎样分两步找出组合数,再求选送方案的总数。这里渗透了作为排列组合基础之一的乘法原理。例7是一个比较复杂的逻辑推理问题,借助列表,则比较容易逐步缩小范围,找到答案。这里渗透了逻辑推理的常用方法排除法。教学目标:1通过学生观察、探索,使学生掌握数线段的方法。2渗透化难为易的数学思想方法,能运用一定规律解决较复杂的数学问题。3培养学生归纳推理探索规律的能力。重点难点:引导学生发现规律,找到数线段的方法教具学具:多媒体课件教学指导:1出示例5前,可以先让学生说说几年来每一学期的数学广角学了些什么。 探索例5时,应当先让学生理解问题。可以通过读题、说题意,使学生明白每两点之间都能连一条线段。然后让学生自己动手在纸上画画、试试,再来讨论有没有什么好方法2探究例6时,可以直接给出题目,由学生自己尝试,也可以将例题分解,让学生先回答3探究例7时,必须先让学生仔细读题,理解题意。教学过程:一、复习回顾,游戏设疑,激趣导入。1师:同学们,课前我们来做一个游戏吧,请你们拿出纸和笔在纸上任意点上8个点,并将它们每两点连成一条线,再数一数,看看连成了多少条线段。(课件出现下图,之后学生操作)2师:同学们,有结果了吗?(学生表示:太乱了,都数昏了)大家别着急,今天,我们就一起来用数学的思考方法去研究这个问题。(板书课题)二、逐层探究,发现规律。1从简到繁,动态演示,经历连线过程。 63 / 64

    注意事项

    本文(新人教版六年级下册数学教案及反思5篇.doc)为本站会员(1595****071)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开