欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    2022年最新九年级上册数学二次函数知识点汇总 .pdf

    • 资源ID:39731603       资源大小:341.01KB        全文页数:8页
    • 资源格式: PDF        下载积分:4.3金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要4.3金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2022年最新九年级上册数学二次函数知识点汇总 .pdf

    精品文档精品文档新人教版九年级上二次函数知识点总结知识点一:二次函数的定义1二次函数的定义:一般地,形如2yaxbxc(abc,是常数,0a)的函数,叫做二次函数其中 a 是二次项系数,b是一次项系数,c 是常数项知识点二:二次函数的图象与性质抛物线的三要素:开口、对称轴、顶点2.二次函数2ya xhk的图象与性质(1)二次函数基本形式2yax 的图象与性质:a 的绝对值越大,抛物线的开口越小(2)2yaxc的图象与性质:上加下减名师资料总结-精品资料欢迎下载-名师精心整理-第 1 页,共 8 页 -精品文档精品文档(3)2ya xh的图象与性质:左加右减名师资料总结-精品资料欢迎下载-名师精心整理-第 2 页,共 8 页 -精品文档精品文档(4)二次函数2ya xhk 的图象与性质3.二次函数cbxaxy2的图像与性质(1)当0a时,抛物线开口向上,对称轴为2bxa,顶点坐标为2424bacbaa,当2bxa时,y随 x 的增大而减小;当2bxa时,y随 x 的增大而增大;当2bxa时,y有最小值244acba(2)当0a时,抛物线开口向下,对称轴为2bxa,顶点坐标为2424bacbaa,当2bxa时,y随 x 的增大而增大;当2bxa时,y随 x 的增大而减小;当2bxa时,y有最大值244acba名师资料总结-精品资料欢迎下载-名师精心整理-第 3 页,共 8 页 -精品文档精品文档4.二次函数常见方法指导(1)二次函数2yaxbxc 图象的画法画精确图五点绘图法(列表-描点-连线)利用配方法将二次函数2yaxbxc 化为顶点式2()ya xhk,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.画草图抓住以下几点:开口方向,对称轴,与y轴的交点,顶点.(2)二次函数图象的平移平移步骤:将抛物线解析式转化成顶点式2ya xhk,确定其顶点坐标hk,;可以由抛物线2ax经过适当的平移得到具体平移方法如下:向右(h0)【或左(h0)【或下(k0)【或左(h0)【或左(h0)【或下(k0)【或向下(k0)】平移|k|个单位y=a(x-h)2+ky=a(x-h)2y=ax2+ky=ax2平移规律:概括成八个字“左加右减,上加下减”(3)用待定系数法求二次函数的解析式一般式:.已知图象上三点或三对、的值,通常选择一般式.顶点式:.已知图象的顶点或对称轴,通常选择顶点式.交点式:.已知图象与轴的交点坐标、,通常选择交点式.(4)求抛物线的顶点、对称轴的方法公式法:abacabxacbxaxy442222,顶点是),(abacab4422,对称轴是直线abx2.配方法:运用配方的方法,将抛物线的解析式化为khxay2的形式,得到顶点为(h,k),对称轴是直线hx.名师资料总结-精品资料欢迎下载-名师精心整理-第 4 页,共 8 页 -精品文档精品文档运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点.(5)抛物线cbxaxy2中,cba,的作用a决定开口方向及开口大小,这与2axy中的a完全一样.b和a共同决定抛物线对称轴的位置由于抛物线cbxaxy2的对称轴是直线abx2,故如果0b时,对称轴为y轴;如果0ab(即a、b同号)时,对称轴在y轴左侧;如果0ab(即a、b异号)时,对称轴在y轴右侧.c的大小决定抛物线cbxaxy2与y轴交点的位置当0 x时,cy,所以抛物线cbxaxy2与y轴有且只有一个交点(0,c),故如果0c,抛物线经过原点;如果0c,与y轴交于正半轴;如果0c,与y轴交于负半轴.知识点三:二次函数与一元二次方程的关系5.函数cbxaxy2,当0y时,得到一元二次方程20axbxc,那么一元二次方程的解就是二次函数的图象与x轴交点的横坐标,因此二次函数图象与x轴的交点情况决定一元二次方程根的情况.(1)当二次函数的图象与x轴有两个交点,这时,则方程有两个不相等实根;(2)当二次函数的图象与x轴有且只有一个交点,这时,则方程有两个相等实根;(3)当二次函数的图象与x轴没有交点,这时,则方程没有实根.通过下面表格可以直观地观察到二次函数图象和一元二次方程的关系:名师资料总结-精品资料欢迎下载-名师精心整理-第 5 页,共 8 页 -精品文档精品文档的图象的解方程有两个不等实数解方程有两个相等实数解方程没有实数解6.拓展:关于直线与抛物线的交点知识(1)y轴与抛物线cbxaxy2得交点为(0,)c.(2)与y轴 平 行 的 直 线hx与 抛 物 线cbxaxy2有 且 只 有 一 个 交 点(h,cbhah2).(3)抛物线与x轴的交点二次函数cbxaxy2的图像与x轴的两个交点的横坐标1x、2x,是对应一元二次方程02cbxax的两个实数根.抛物线与x轴的交点情况可以由对应的一元二次方程的根的判别式判定:有两个交点0抛物线与x轴相交;有一个交点(顶点在x轴上)0抛物线与x轴相切;没有交点0抛物线与x轴相离.(4)平行于x轴的直线与抛物线的交点同(3)一样可能有0 个交点、1 个交点、2 个交点.当有 2 个交点时,两交点的纵坐标相等,设纵坐标为k,则横坐标是kcbxax2的两个实数根.名师资料总结-精品资料欢迎下载-名师精心整理-第 6 页,共 8 页 -精品文档精品文档(5)一次函数0knkxy的图像l与二次函数02acbxaxy的图像G的交点,由方程组2ykxnyaxbxc的解的数目来确定:方程组有两组不同的解时l与G有两个交点;方程组只有一组解时l与G只有一个交点;方程组无解时l与G没有交点.(6)抛物线与x轴两交点之间的距离:若抛物线cbxaxy2与x轴两交点为0021,xBxA,由于1x、2x是方程02cbxax的两个根,故acxxabxx2121,aaacbacabxxxxxxxxAB444222122122121知识点四:利用二次函数解决实际问题7.利用二次函数解决实际问题,要建立数学模型,即把实际问题转化为二次函数问题,利用题中存在的公式、内含的规律等相等关系,建立函数关系式,再利用函数的图象及性质去研究问题.在研究实际问题时要注意自变量的取值范围应具有实际意义.利用二次函数解决实际问题的一般步骤是:(1)建立适当的平面直角坐标系;(2)把实际问题中的一些数据与点的坐标联系起来;(3)用待定系数法求出抛物线的关系式;(4)利用二次函数的图象及其性质去分析问题、解决问题.名师资料总结-精品资料欢迎下载-名师精心整理-第 7 页,共 8 页 -精品文档精品文档名师资料总结-精品资料欢迎下载-名师精心整理-第 8 页,共 8 页 -

    注意事项

    本文(2022年最新九年级上册数学二次函数知识点汇总 .pdf)为本站会员(H****o)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开