中考数学二次函数应用题(含答案).doc
中考数学二次函数应用题分类汇编列方程(组)解应用题是中考的必考内容,必是中考的热点考题之一,列方程(组)解应用题的关键及难点是如何找到能够表示题目全部含义的相等关系,所谓“能表示全部含义”就是指在相等关系中,题目所给出的全部条件(包括所求的量)都要给予充分利用,不能漏掉,但也不能把同一条件重复使用,应用题中的相等关系通常有两种,一种是通过题目的一些关键词语表现出来的明显的相等关系,如“多” 、“少” 、“增加” 、“减少” 、“快” 、“慢”等,另一种是题目中没有明显给出而题意中又包含着的隐含相等关系,这也是中考的重点和难点,此时需全面深入的理解题意,结合日常生活常识和自然科学知识才能做到解应用题的一般步骤:解应用题的一般步骤可以归结为:“审、设、列、解、验、答” 1、“审”是指读懂题目,弄清题意,明确题目中的已知量,未知量,以及它们之间的关系,审题时也可以利用图示法,列表法来帮助理解题意2、“设”是指设元,也就是未知数包括设直接未知数和设间接未知数以及设辅助未知数(较难的题目)3、“列”就是列方程,这是非常重要的关键步骤,一般先找出能够表达应用题全部含义的一个相等关系,然后列代数式表示相等关系中的各个量,就得到含有未知数的等式,即方程4、“解”就是解方程,求出未知数的值5、“验”就是验解,即检验方程的解能否保证实际问题有意义6、“答”就是写出答案(包括单位名称)应用题类型:近年全国各地的中考题中涉及的应用题类型主要有:行程问题,工程问题,增产率问题,百分比浓度问题,和差倍分问题,及函数综合类问题,市场经济问题等几种常见类型和等量关系如下:1、行程问题:基本量之间的关系:路程=速度×时间,即:常见等量关系:(1)相遇问题:甲走的路程+乙走的路程=原来甲、乙相距的路程(2)追及问题(设甲速度快):同时不同地:甲用的时间乙用的时间;甲走的路程乙走的路程原来甲、乙相距的路程同地不同时:甲用的时间乙用的时间时间差;甲走的路程乙走的路程2、工程问题:基本量之间的关系:工作量=工作效率×工作时间常见等量关系:甲的工作量乙的工作量甲、乙合作的工作总量3、增长率问题:基本量之间的关系:现产量=原产量×(1+增长率)4、百分比浓度问题:基本量之间的关系:溶质=溶液×浓度5、水中航行问题:基本量之间的关系:顺流速度船在静水中速度水流速度; 逆流速度船在静水中速度水流速度6、市场经济问题:基本量之间的关系:商品利润=售价进价;商品利润率=利润÷进价;利息=本金×利率×期数;本息和=本金+本金×利率×期数中考数学二次函数应用题分类汇总一,基础类型题1. 一小球被抛出后,距离地面的高度h(米)和飞行时间t(秒)满足下列函数关系式:,则小球距离地面的最大高度是( )A1米 B5米 C6米 D7米 【答案】C2. (广东株洲)某广场有一喷水池,水从地面喷出,如图,以水平地面为轴,出水点为原点,建立平面直角坐标系,水在空中划出的曲线是抛物线y=x2+4x(单位:米)的一部分,则水喷出的最大高度是( )A4米 B3米 C2米 D1米 【答案】D3. (山东聊城)某公园草坪的防护栏是由100段形状相同的抛物线组成的为了牢固起见,每段护栏需要间距0.4m加设一根不锈钢的支柱,防护栏的最高点距底部0.5m(如图),则这条防护栏需要不锈钢支柱的总长度至少为( ) A50m B100m C160m D200m 【答案】C4. (湖南怀化)出售某种手工艺品,若每个获利x元,一天可售出(8x)个,则当x=_元时,一天出售该种手工艺品的总利润y最大. 【答案】45. (山东滨州)如图,某广场设计的一建筑物造型的纵截面是抛物线的一部分,抛物线的顶点O落在水平面上,对称轴是水平线OC。点A、B在抛物线造型上,且点A到水平面的距离AC=4O米,点B到水平面距离为2米,OC=8米。(1) 请建立适当的直角坐标系,求抛物线的函数解析式;(2) 为了安全美观,现需在水平线OC上找一点P,用质地、规格已确定的圆形钢管制作两根支柱PA、PB对抛物线造型进行支撑加固,那么怎样才能找到两根支柱用料最省(支柱及地面、造型对接方式的用料多少问题暂不考虑)时的点P?(无需证明)(3) 为了施工方便,现需计算出点O、P之间的距离,那么两根支柱用料最省时点O、P之间的距离是多少?(请写出求解过程)【答案】解:(1)以点O为原点、射线OC为y轴的正半轴建立直角坐标系设抛物线的函数解析式为,由题意知点A的坐标为(4,8)。且点A在抛物线上,所以8=a×,解得a=,故所求抛物线的函数解析式为(2)找法:延长AC,交建筑物造型所在抛物线于点D, 则点A、D关于OC对称。连接BD交OC于点P,则点P即为所求。(3)由题意知点B的横坐标为2,且点B在抛物线上,所以点B的坐标为(2,2)又知点A的坐标为(4,8),所以点D的坐标为(4,8)设直线BD的函数解析式为y=kx+b,则有解得k=1,b=4. 故直线BD的函数解析式为y=x+4,把x=0代入y=x+4,得点P的坐标为(0,4)两根支柱用料最省时,点O、P之间的距离是4米。6、(衢州)某果园有100棵橘子树,平均每一棵树结600个橘子根据经验估计,每多种一颗树,平均每棵树就会少结5个橘子设果园增种x棵橘子树,果园橘子总个数为y个,则果园里增种10棵橘子树,橘子总个数最多解答:解:假设果园增种x棵橙子树,那么果园共有(x+100)棵橙子树,每多种一棵树,平均每棵树就会少结5个橙子,这时平均每棵树就会少结5x个橙子,则平均每棵树结(6005x)个橙子果园橙子的总产量为y,则y=(x+100)(6005x)=5x2+100x+60000,当x=10(棵)时,橘子总个数最多故答案为:10点评:此题主要考查了二次函数的应用,准确分析题意,列出y及x之间的二次函数关系式是解题关键7、(山西)如图是我省某地一座抛物线形拱桥,桥拱在竖直平面内,及水平桥面相交于A,B两点,桥拱最高点C到AB的距离为9m,AB=36m,D,E为桥拱底部的两点,且DEAB,点E到直线AB的距离为7m,则DE的长为_m. 【答案】48【解析】以C为原点建立平面直角坐标系,如右上图,依题意,得B(18,9),设抛物线方程为:,将B点坐标代入,得a,所以,抛物线方程为:,E点纵坐标为y16,代入抛物线方程,16,解得:x24,所以,DE的长为48m。例2(广东省)将一条长为20cm的铁丝剪成两段,并以每一段铁丝的长度为周长做成一个正方形 (1)要使这两个正方形的面积之和等于17cm2,那么这段铁丝剪成两段后的长度分别是多少?(2)两个正方形的面积之和可能等于12cm2吗? 若能,求出两段铁丝的长度;若不能,请说明理由(1)解:设剪成两段后其中一段为xcm,则另一段为(20-x)cm 由题意得: 解得:, 当时,20-x=4 当时,20-x=16 答:(略) (2)不能 理由是: 整理得: = 此方程无解 即不能剪成两段使得面积和为12cm2二,销售利润问题1 .(南京市) 西瓜经营户以2元/千克的价格购进一批小型西瓜,以3元/千克的价格出售,每天可售出200千克为了促销,该经营户决定降价销售经调查发现,这种小型西瓜每降价0.1元/千克,每天可多售出40千克另外,每天的房租等固定成本共24元该经营户要想每天盈利200元,应将每千克小型西瓜的售价降低多少元?解:设应将每千克小型西瓜的售价降低元,根据题意得:解这个方程得: 答:应将每千克小型西瓜的售价降低0.2或0.3元2. (山东泰安)某商店经营一种小商品,进价为每件20元,据市场分析,在一个月内,售价定为每件25元时,可卖出105件,而售价每上涨1元,就少卖5件。(1)当售价定为每件30元时,一个月可获利多少元?(2)当售价定为每件多少元时,一个月的获利最大?最大利润是多少元?【答案】(1)获利:(3020)1055(3025)=800(元)(2)设售价为每件x元时,一个月的获利为y元由题意,得:y=(x20)1055(3025)=5x2+330x4600=5(x33)2+845当x=33时,y的最大值是845故当售价为定价格为33元时,一个月获利最大,最大利润是845元。3、(滨州)某商品的进价为每件40元当售价为每件60元时,每星期可卖出300件,现需降价处理,且经市场调查:每降价1元,每星期可多卖出20件在确保盈利的前提下,解答下列问题:(1)若设每件降价元、每星期售出商品的利润为元,请写出及的函数关系式,并求出自变量的取值范围;(2)当降价多少元时,每星期的利润最大?最大利润是多少?(3)请画出上述函数的大致图象答案】(1)y=(60-x-40)(300+20x)=(20-x) (300+20x)=-,0x20;(2)y=-20,当x=2.5元,每星期的利润最大,最大利润是6135元;(3)图像略.4、(孝感)在“母亲节”前夕,我市某校学生积极参及“关爱贫困母亲”的活动,他们购进一批单价为20元的“孝文化衫”在课余时间进行义卖,并将所得利润捐给贫困母亲经试验发现,若每件按24元的价格销售时,每天能卖出36件;若每件按29元的价格销售时,每天能卖出21件假定每天销售件数y(件)及销售价格x(元/件)满足一个以x为自变量的一次函数(1)求y及x满足的函数关系式(不要求写出x的取值范围);(2)在不积压且不考虑其他因素的情况下,销售价格定为多少元时,才能使每天获得的利润P最大?解答:解:(1)设y及x满足的函数关系式为:y=kx+b 由题意可得:解得故y及x的函数关系式为:y=3x+108 (2)每天获得的利润为:P=(3x+108)(x20)=3x2+168x2160=3(x28)2+192 故当销售价定为28元时,每天获得的利润最大点评:本题主要考查二次函数的应用的知识点,解答本题的关键是熟练掌握二次函数的性质以及最值得求法,此题难度不大5、某体育用品商店购进一批滑板,每件进价为100元,售价为130元,每星期可卖出80件.商家决定降价促销,根据市场调查,每降价5元,每星期可多卖出20件.(1)求商家降价前每星期的销售利润为多少元?(2)降价后,商家要使每星期的销售利润最大,应将售价定为多少元?最大销售利润是多少?解:(1) (130-100)×80=2400(元)(2)设应将售价定为元,则销售利润 .当时,有最大值2500. 应将售价定为125元,最大销售6、某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台 (1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y及x之间的函数表达式;(不要求写自变量的取值范围) (2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元? (3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?解:(1),即(2)由题意,得整理,得得要使百姓得到实惠,取所以,每台冰箱应降价200元(3)对于,当时,所以,每台冰箱的售价降价150元时,商场的利润最大,最大利润是5000元7.(山东菏泽)我市一家电子计算器专卖店每只进价13元,售价20元,多买优惠 ;凡是一次买10只以上的,每多买1只,所买的全部计算器每只就降低0.10元,例如,某人买20只计算器,于是每只降价0.10×(2010)=1(元),因此,所买的全部20只计算器都按照每只19元计算,但是最低价为每只16元(1) 求一次至少买多少只,才能以最低价购买?(2) 写出该专卖店当一次销售x(时,所获利润y(元)及x(只)之间的函数关系式,并写出自变量x的取值范围;(3)若店主一次卖的只数在10至50只之间,问一次卖多少只获得的利润最大?其最大利润为多少?解:(1)设一次购买x只,才能以最低价购买,则有:0.1(x10)=2016,解这个方程得x=50; 答:一次至少买50只,才能以最低价购买 (2) (说明:因三段图象首尾相连,所以端点10、50包括在哪个区间均可)(3)将配方得,所以店主一次卖40只时可获得最高利润,最高利润为160元8、(武汉)某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨1元,则每个月少卖10件(每件售价不能高于65元)设每件商品的售价上涨元(为正整数),每个月的销售利润为元(1)求及的函数关系式并直接写出自变量的取值范围;(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?(3)每件商品的售价定为多少元时,每个月的利润恰为2200元?根据以上结论,请你直接写出售价在什么范围时,每个月的利润不低于2200元?【关键词】二次函数的应用 二次函数的极值问题 【答案】解:(1)(且为整数);(2),当时,有最大值2402.5,且为整数,当时,(元),当时,(元)当售价定为每件55或56元,每个月的利润最大,最大的月利润是2400元(3)当时,解得:当时,当时,当售价定为每件51或60元,每个月的利润为2200元当售价不低于51或60元,每个月的利润为2200元当售价不低于51元且不高于60元且为整数时,每个月的利润不低于2200元(或当售价分别为51,52,53,54,55,56,57,58,59,60元时,每个月的利润不低于2200元)9、(黄冈)某公司生产的一种健身产品在市场上受到普遍欢迎,每年可在国内、国外市场上全部售完该公司的年产量为6千件,若在国内市场销售,平均每件产品的利润y1(元)及国内销售量x(千件)的关系为:y1=若在国外销售,平均每件产品的利润y2(元)及国外的销售数量t(千件)的关系为y2=(1)用x的代数式表示t为:t=6x;当0x4时,y2及x的函数关系为:y2=5x+80;当4x6时,y2=100;(2)求每年该公司销售这种健身产品的总利润w(千元)及国内销售数量x(千件)的函数关系式,并指出x的取值范围;(3)该公司每年国内、国外的销售量各为多少时,可使公司每年的总利润最大?最大值为多少?分析:(1)由该公司的年产量为6千件,每年可在国内、国外市场上全部售完,可得国内销售量+国外销售量=6千件,即x+t=6,变形即为t=6x;根据平均每件产品的利润y2(元)及国外的销售数量t(千件)的关系及t=6x即可求出y2及x的函数关系:当0x4时,y2=5x+80;当4x6时,y2=100;(2)根据总利润=国内销售的利润+国外销售的利润,结合函数解析式,分三种情况讨论:0x2;2x4;4x6;(3)先利用配方法将各解析式写成顶点式,再根据二次函数的性质,求出三种情况下的最大值,再比较即可解答:解:(1)由题意,得x+t=6,t=6x;,当0x4时,26x6,即2t6,此时y2及x的函数关系为:y2=5(6x)+110=5x+80;当4x6时,06x2,即0t2,此时y2=100故答案为6x;5x+80;4,6;(2)分三种情况:当0x2时,w=(15x+90)x+(5x+80)(6x)=10x2+40x+480;当2x4时,w=(5x+130)x+(5x+80)(6x)=10x2+80x+480;当4x6时,w=(5x+130)x+100(6x)=5x2+30x+600;综上可知,w=;(3)当0x2时,w=10x2+40x+480=10(x+2)2+440,此时x=2时,w最大=600;当2x4时,w=10x2+80x+480=10(x4)2+640,此时x=4时,w最大=640;当4x6时,w=5x2+30x+600=5(x3)2+645,4x6时,w640;x=4时,w最大=640故该公司每年国内、国外的销售量各为4千件、2千件,可使公司每年的总利润最大,最大值为64万元10、(鞍山)某商场购进一批单价为4元的日用品若按每件5元的价格销售,每月能卖出3万件;若按每件6元的价格销售,每月能卖出2万件,假定每月销售件数y(件)及价格x(元/件)之间满足一次函数关系(1)试求y及x之间的函数关系式;(2)当销售价格定为多少时,才能使每月的利润最大?每月的最大利润是多少?考点:二次函数的应用分析:(1)利用待定系数法求得y及x之间的一次函数关系式;(2)根据“利润=(售价成本)×售出件数”,可得利润W及销售价格x之间的二次函数关系式,然后求出其最大值解答:解:(1)由题意,可设y=kx+b,把(5,30000),(6,20000)代入得:,解得:,所以y及x之间的关系式为:y=10000x+80000;(2)设利润为W,则W=(x4)(10000x+80000)=10000(x4)(x8)=10000(x212x+32)=10000(x6)24=10000(x6)2+40000所以当x=6时,W取得最大值,最大值为40000元答:当销售价格定为6元时,每月的利润最大,每月的最大利润为40000元11、(咸宁)为鼓励大学毕业生自主创业,某市政府出台了相关政策:由政府协调,本市企业按成本价提供产品给大学毕业生自主销售,成本价及出厂价之间的差价由政府承担李明按照相关政策投资销售本市生产的一种新型节能灯已知这种节能灯的成本价为每件10元,出厂价为每件12元,每月销售量y(件)及销售单价x(元)之间的关系近似满足一次函数:y=10x+500(1)李明在开始创业的第一个月将销售单价定为20元,那么政府这个月为他承担的总差价为多少元?(2)设李明获得的利润为w(元),当销售单价定为多少元时,每月可获得最大利润?(3)物价部门规定,这种节能灯的销售单价不得高于25元如果李明想要每月获得的利润不低于300元,那么政府为他承担的总差价最少为多少元?分析:(1)把x=20代入y=10x+500求出销售的件数,然后求出政府承担的成本价及出厂价之间的差价;(2)由利润=销售价成本价,得w=(x10)(10x+500),把函数转化成顶点坐标式,根据二次函数的性质求出最大利润;(3)令10x2+600x5000=3000,求出x的值,结合图象求出利润的范围,然后设设政府每个月为他承担的总差价为p元,根据一次函数的性质求出总差价的最小值解答:解:(1)当x=20时,y=10x+500=10×20+500=300,300×(1210)=300×2=600,即政府这个月为他承担的总差价为600元(2)依题意得,w=(x10)(10x+500)=10x2+600x5000=10(x30)2+4000a=100,当x=30时,w有最大值4000即当销售单价定为30元时,每月可获得最大利润4000(3)由题意得:10x2+600x5000=3000,解得:x1=20,x2=40a=100,抛物线开口向下,结合图象可知:当20x40时,w3000,又x25,当20x25时,w3000设政府每个月为他承担的总差价为p元,p=(1210)×(10x+500)=20x+1000k=200p随x的增大而减小,当x=25时,p有最小值500即销售单价定为25元时,政府每个月为他承担的总差价最少为500元12、某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量(件)及销售单价(元)符合一次函数,且时,;时,(1)求一次函数的表达式;(2)若该商场获得利润为元,试写出利润及销售单价之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?(3)若该商场获得利润不低于500元,试确定销售单价的范围解:(1)根据题意得解得所求一次函数的表达式为(2) ,抛物线的开口向下,当时,随的增大而增大,而,当时,当销售单价定为87元时,商场可获得最大利润,最大利润是891元(3)由,得,整理得,解得,由图象可知,要使该商场获得利润不低于500元,销售单价应在70元到110元之间,而,所以,销售单价的范围是13、某商场在销售旺季临近时 ,某品牌的童装销售价格呈上升趋势,假如这种童装开始时的售价为每件20元,并且每周(7天)涨价2元,从第6周开始,保持每件30元的稳定价格销售,直到11周结束,该童装不再销售。 (1)请建立销售价格y(元)及周次x之间的函数关系; (2)若该品牌童装于进货当周售完,且这种童装每件进价z(元)及周次x之间的关系为, 1 x 11,且x为整数,那么该品牌童装在第几周售出后,每件获得利润最大?并求最大利润为多少? 解:(1)(2)设利润为综上知:在第11周进货并售出后,所获利润最大且为每件元(10分14.(贵州省黔东南州)凯里市某大型酒店有包房100间,在每天晚餐营业时间,每间包房收包房费100元时,包房便可全部租出;若每间包房收费提高20元,则减少10间包房租出,若每间包房收费再提高20元,则再减少10间包房租出,以每次提高20元的这种方法变化下去。(1)设每间包房收费提高x(元),则每间包房的收入为y1(元),但会减少y2间包房租出,请分别写出y1、y2及x之间的函数关系式。(2)为了投资少而利润大,每间包房提高x(元)后,设酒店老板每天晚餐包房总收入为y(元),请写出y及x之间的函数关系式,求出每间包房每天晚餐应提高多少元可获得最大包房费收入,并说明理由。【答案】解:(1) (2) 即:y因为提价前包房费总收入为100×100=10000。当x=50时,可获最大包房收入11250元,因为11250>10000。又因为每次提价为20元,所以每间包房晚餐应提高40元或60元。15、(重庆市江津区)某商场在销售旺季临近时 ,某品牌的童装销售价格呈上升趋势,假如这种童装开始时的售价为每件20元,并且每周(7天)涨价2元,从第6周开始,保持每件30元的稳定价格销售,直到11周结束,该童装不再销售。 (1)请建立销售价格y(元)及周次x之间的函数关系; (2)若该品牌童装于进货当周售完,且这种童装每件进价z(元)及周次x之间的关系为, 1 x 11,且x为整数,那么该品牌童装在第几周售出后,每件获得利润最大?并求最大利润为多少?【关键词】二次函数极值【答案】【答案】(1)(2)设利润为 当时, 当时,综上知:在第11周进货并售出后,所获利润最大且为每件元.16、(黄冈市)新星电子科技公司积极应对2008年世界金融危机,及时调整投资方向,瞄准光伏产业,建成了太阳能光伏电池生产线由于新产品开发初期成本高,且市场占有率不高等因素的影响,产品投产上市一年来,公司经历了由初期的亏损到后来逐步盈利的过程(公司对经营的盈亏情况每月最后一天结算1次)公司累积获得的利润y(万元)及销售时间第x(月)之间的函数关系式(即前x个月的利润总和y及x之间的关系)对应的点都在如图所示的图象上该图象从左至右,依次是线段OA、曲线AB和曲线BC,其中曲线AB为抛物线的一部分,点A为该抛物线的顶点,曲线BC为另一抛物线的一部分,且点A,B,C的横坐标分别为4,10,12(1)求该公司累积获得的利润y(万元)及时间第x(月)之间的函数关系式;(2)直接写出第x个月所获得S(万元)及时间x(月)之间的函数关系式(不需要写出计算过程);(3)前12个月中,第几个月该公司所获得的利润最多?最多利润是多少万元?【答案】(1)当时,线段OA的函数关系式为;当时,由于曲线AB所在抛物线的顶点为A(4,40),设其解析式为在中,令x=10,得;B(10,320)B(10,320)在该抛物线上解得当时,=,.综上可知,(2) 当时, 当时, 当时, (3) 10月份该公司所获得的利润最多,最多利润是110万元.不低于2200元)17、(山东青岛)某商场要经营一种新上市的文具,进价为20元,试营销阶段发现:当销售单价是25元时,每天的销售量为250件,销售单价每上涨1元,每天的销售量就减少10件(1)写出商场销售这种文具,每天所得的销售利润(元)及销售单价(元)之间的函数关系式;来源:学科网ZXXK(2)求销售单价为多少元时,该文具每天的销售利润最大;(3)商场的营销部结合上述情况,提出了A、B两种营销方案方案A:该文具的销售单价高于进价且不超过30元;方案B:每天销售量不少于10件,且每件文具的利润至少为25元请比较哪种方案的最大利润更高,并说明理由解析:(1)w(x20)(25010x250)10x2700x10000(2)w10x2700x1000010(x35)22250所以,当x35时,w有最大值2250,即销售单价为35元时,该文具每天的销售利润最大(3)方案A:由题可得x30,因为a100,对称轴为x35,抛物线开口向下,在对称轴左侧,w随x的增大而增大,所以,当x30时,w取最大值为2000元,方案B:由题意得,解得:,在对称轴右侧,w随x的增大而减小,所以,当x45时,w取最大值为1250元,因为2000元1250元,所以选择方案A。18为迎接第四届世界太阳城大会,德州市把主要路段路灯更换为太阳能路灯已知太阳能路灯售价为5000元/个,目前两个商家有此产品甲商家用如下方法促销:若购买路灯不超过100个,按原价付款;若一次购买100个以上,且购买的个数每增加一个,其价格减少10元,但太阳能路灯的售价不得低于3500元/个乙店一律按原价的80销售现购买太阳能路灯x个,如果全部在甲商家购买,则所需金额为y1元;如果全部在乙商家购买,则所需金额为y2元.(1)分别求出y1、y2及x之间的函数关系式;(2)若市政府投资140万元,最多能购买多少个太阳能路灯?解:(1)由题意可知,当x100时,购买一个需元,故;-1分当x100时,因为购买个数每增加一个,其价格减少10元,但售价不得低于3500元/个,所以x+100=250 即100x250时,购买一个需5000-10(x-100)元,故y1=6000x-10x2;当x>250时,购买一个需3500元,故;所以, (2) 当0<x100时,y1=5000x500000<1400000;当100<x250时,y1=6000x-10x2=-10(x-300)2+900000<1400000;所以,由,得;由,得 故选择甲商家,最多能购买400个路灯19该款工艺品每天的销售量y(件)及售价x(元)之间存在着如下表所示的一次函数关系售价x(元)7090销售量y(件)30001000(利润(售价成本价)×销售量)(1)求销售量y(件)及售价x(元)之间的函数关系式;(2)你认为如何定价才能使工艺品厂每天获得的利润为40000 元?(1)设一次函数的关系式为,根据题意得.2分解得 一次关系式为y= -100x+10000.5分(2)由题意得 (x-60)(-100x+10000)=40000即,解得,答:当定价为80元时,才能使工艺品厂每天的利润为40000元20某种商品的成本为5元/件,开始按8元/件销售,销售量为50件,为了获取最大利润,商家先后采取了提价及降价两种措施进行试销经试销发现:销售价每上涨1元每天销售量就减少10件;而降价后,日销售量利润y (元)及实际销售价x (元)满足关系:y=198-6x(6x<8)(1)求售价为7元/件时,日销售量为多少件?(2)求日销售利润(利润销售额成本)y(元)及实际销售价x (件)的函数关系式;(3)试问:当实际销售价为多少元时,总利润最大 解:(1)当售价为7元/件时,利润y=19842=156(元),此时销售(件);2分(2)据题意,得 =6分(3)由(2)得: 当6x<8时,y=198-6x,所以当x=6时,y最大=162;当x8时,y10(x9)2160,所以当x9时,y极大160;综上可知,当当x=6时,y最大=16221. (河北省)研究所对某种新型产品的产销情况进行了研究,为了投资商在甲、乙两地生产并销售该产品提供了如下成果:第一年的年产量为x(吨)时,所需的全部费用y(万元)及x满足关系式,投入市场后当年能全部售出,且在甲、乙两地每吨的售价、(万元)均及x满足一次函数关系。(注:年利润=年销售额-全部费用)(1)成果表明,在甲地生产并销售x吨时,请你用含x的代数式表示甲地当年的年销售额,并求年利润(万元)及x之间的函数关系式;(2)成果表明,在乙地生产并销售x吨时,(n为常数),且在乙地当年的最大年利润为35万元。试确定n的值;(3)受资金、生产能力等多种因素的影响,某投资商计划第一年生产并销售该产品18吨,根据(1),(2)中的结果,请你通过计算帮他决策,选择在甲地还是乙地产销才能获得较大的年利润?解:(1)甲地当年的年销售额为万元,。(2)在乙地生产并销售时,年利润解得n=15或-5。经检验,n=-5不合题意,舍去,所以n=15。(3)在乙地生产并销售时,年利润将x=18代入上式,得(万元);将x=18代入得(万元)。因为,所以应选乙地。22、(武汉)某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨1元,则每个月少卖10件(每件售价不能高于65元)设每件商品的售价上涨元(为正整数),每个月的销售利润为元(1)求及的函数关系式并直接写出自变量的取值范围;(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?(3)每件商品的售价定为多少元时,每个月的利润恰为2200元?根据以上结论,请你直接写出售价在什么范围时,每个月的利润不低于2200元?【答案】解:(1)(且为整数);(2),当时,有最大值2402.5,且为整数,当时,(元),当时,(元)当售价定为每件55或56元,每个月的利润最大,最大的月利润是2400元(3)当时,解得:当时,当时,当售价定为每件51或60元,每个月的利润为2200元当售价不低于51或60元,每个月的利润为2200元当售价不低于51元且不高于60元且三,实际应用问题1、张大爷要围成一个矩形花圃花圃的一边利用足够长的墙另三边用总长为32米的篱笆恰好围成围成的花圃是如图所示的矩形ABCD设AB边的长为x米矩形ABCD的面积为S平方米 (1)求S及x之间的函数关系式(不要求写出自变量x的取值范围) (2)当x为何值时,S有最大值?并求出最大值(参公式:二次函数(),当时,)2、(南宁市)如图,要设计一个等腰梯形的花坛,花坛上底长米,下底长米,上下底相距米,在两腰中点连线(虚线)处有一条横向甬道,上下底之间有两条纵向甬道,各甬道的宽度相等设甬道的宽为米(1)用含的式子表示横向甬道的面积;(2)当三条甬道的面积是梯形面积的八分之一时,求甬道的宽;(3)根据设计的要求,甬道的宽不能超过6米.如果修建甬道的总费用(万元)及甬道的宽度成正比例关系,比例系数是5.7,花坛其余部分的绿化费用为每平方米0.02万元,那么当甬道的宽度为多少米时,所建花坛的总费用最少?最少费用是多少万元?【答案】解:(1)横向甬道的面积为:(2)依题意:整理得:(不符合题意,舍去)甬道的宽为5米(3)设建设花坛的总费用为万元当时,的值最小因为根据设计的要求,甬道的宽不能超过6米,米时,总费用最少最少费用为:万元3. (湖北武汉市)星光中学课外活动小组准备围建一个矩形生物苗圃园其中一边靠墙,另外三边用长为30米的篱笆围成已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边的长为x米(1)若平行于墙的一边的长为y米,直接写出y及x之间的函数关系式及其自变量x的取值范围;(2)垂直于墙的一边的长为多少米时,这个苗圃园的面积最大,并求出这个最大值;(3)当这个苗圃园的面积不小于88平方米时,试结合函数图像,直接写出x的取值范围 【答案】解:(1)y=302x(6x15)(2)设矩形苗圃园的面积为S则S=xy=x(302x)=2x230x S=2(x7.5)2112.5由(1)知,6x15当x=7.5时,S最大值112.5即当矩形苗圃园垂直于墙的边长为7.5米时,这个苗圃园的面积最大,最大值为112.5(3)6x114 某村计划建造如图所示的矩形蔬菜温室,要求长及宽的比为21在温室内,沿前侧内墙保留3 m宽的空地,其它三侧内墙各保留1 m宽的通道当矩形温室的长及宽各为多少时,蔬菜种植区域的面积是288 m2?前侧空地蔬 菜 种 植 区 域分析:解法一:(直接设元) 设矩形温室的长为x m,宽为y m