欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    高考卷 浙江省高考数学试卷.doc

    • 资源ID:4016328       资源大小:903KB        全文页数:62页
    • 资源格式: DOC        下载积分:50金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要50金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    高考卷 浙江省高考数学试卷.doc

    2017年浙江省高考数学试卷一、选择题(共10小题,每小题4分,满分40分)1(4分)已知集合P=x|1x1,Q=x|0x2,那么PQ=()A(1,2)B(0,1)C(1,0)D(1,2)2(4分)椭圆+=1的离心率是()ABCD3(4分)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm2)是()A+1B+3C+1D+34(4分)若x、y满足约束条件,则z=x+2y的取值范围是()A0,6B0,4C6,+)D4,+)5(4分)若函数f(x)=x2+ax+b在区间0,1上的最大值是M,最小值是m,则Mm()A与a有关,且与b有关B与a有关,但与b无关C与a无关,且与b无关D与a无关,但与b有关6(4分)已知等差数列an的公差为d,前n项和为Sn,则“d0”是“S4+S62S5”的()A充分不必要条件B必要不充分条件C充分必要条件D既不充分也不必要条件7(4分)函数y=f(x)的导函数y=f(x)的图象如图所示,则函数y=f(x)的图象可能是()ABCD8(4分)已知随机变量i满足P(i=1)=pi,P(i=0)=1pi,i=1,2若0p1p2,则()AE(1)E(2),D(1)D(2)BE(1)E(2),D(1)D(2)CE(1)E(2),D(1)D(2)DE(1)E(2),D(1)D(2)9(4分)如图,已知正四面体DABC(所有棱长均相等的三棱锥),P、Q、R分别为AB、BC、CA上的点,AP=PB,=2,分别记二面角DPRQ,DPQR,DQRP的平面角为、,则()ABCD10(4分)如图,已知平面四边形ABCD,ABBC,AB=BC=AD=2,CD=3,AC与BD交于点O,记I1=,I2=,I3=,则()AI1I2I3BI1I3I2CI3I1I2DI2I1I3二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分11(4分)我国古代数学家刘徽创立的“割圆术”可以估算圆周率,理论上能把的值计算到任意精度,祖冲之继承并发展了“割圆术”,将的值精确到小数点后七位,其结果领先世界一千多年,“割圆术”的第一步是计算单位圆内接正六边形的面积S6,S6= 12(6分)已知a、bR,(a+bi)2=3+4i(i是虚数单位),则a2+b2= ,ab= 13(6分)已知多项式(x+1)3(x+2)2=x5+a1x4+a2x3+a3x2+a4x+a5,则a4= ,a5= 14(6分)已知ABC,AB=AC=4,BC=2,点D为AB延长线上一点,BD=2,连结CD,则BDC的面积是 ,cosBDC= 15(6分)已知向量、满足|=1,|=2,则|+|+|的最小值是 ,最大值是 16(4分)从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人服务队,要求服务队中至少有1名女生,共有 种不同的选法(用数字作答)17(4分)已知aR,函数f(x)=|x+a|+a在区间1,4上的最大值是5,则a的取值范围是 三、解答题(共5小题,满分74分)18(14分)已知函数f(x)=sin2xcos2x2sinx cosx(xR)()求f()的值()求f(x)的最小正周期及单调递增区间19(15分)如图,已知四棱锥PABCD,PAD是以AD为斜边的等腰直角三角形,BCAD,CDAD,PC=AD=2DC=2CB,E为PD的中点()证明:CE平面PAB;()求直线CE与平面PBC所成角的正弦值20(15分)已知函数f(x)=(x)ex(x)(1)求f(x)的导函数;(2)求f(x)在区间,+)上的取值范围21(15分)如图,已知抛物线x2=y,点A(,),B(,),抛物线上的点P(x,y)(x),过点B作直线AP的垂线,垂足为Q()求直线AP斜率的取值范围;()求|PA|PQ|的最大值22(15分)已知数列xn满足:x1=1,xn=xn+1+ln(1+xn+1)(nN*),证明:当nN*时,()0xn+1xn;()2xn+1xn;()xn2017年浙江省高考数学试卷参考答案与试题解析一、选择题(共10小题,每小题4分,满分40分)1(4分)(2017浙江)已知集合P=x|1x1,Q=x|0x2,那么PQ=()A(1,2)B(0,1)C(1,0)D(1,2)【考点】1D:并集及其运算菁优网版权所有【专题】11 :计算题;37 :集合思想;5J :集合【分析】直接利用并集的运算法则化简求解即可【解答】解:集合P=x|1x1,Q=x|0x2,那么PQ=x|1x2=(1,2)故选:A【点评】本题考查集合的基本运算,并集的求法,考查计算能力2(4分)(2017浙江)椭圆+=1的离心率是()ABCD【考点】K4:椭圆的简单性质菁优网版权所有【专题】11 :计算题;35 :转化思想;5D :圆锥曲线的定义、性质与方程【分析】直接利用椭圆的简单性质求解即可【解答】解:椭圆+=1,可得a=3,b=2,则c=,所以椭圆的离心率为:=故选:B【点评】本题考查椭圆的简单性质的应用,考查计算能力3(4分)(2017浙江)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm2)是()A+1B+3C+1D+3【考点】L!:由三视图求面积、体积菁优网版权所有【专题】11 :计算题;31 :数形结合;44 :数形结合法;5Q :立体几何【分析】根据几何体的三视图,该几何体是圆锥的一半和一个三棱锥组成,画出图形,结合图中数据即可求出它的体积【解答】解:由几何的三视图可知,该几何体是圆锥的一半和一个三棱锥组成,圆锥的底面圆的半径为1,三棱锥的底面是底边长2的等腰直角三角形,圆锥的高和棱锥的高相等均为3,故该几何体的体积为123+3=+1,故选:A【点评】本题考查了空间几何体三视图的应用问题,解题的关键是根据三视图得出原几何体的结构特征,是基础题目4(4分)(2017浙江)若x、y满足约束条件,则z=x+2y的取值范围是()A0,6B0,4C6,+)D4,+)【考点】7C:简单线性规划菁优网版权所有【专题】11 :计算题;31 :数形结合;35 :转化思想;5T :不等式【分析】画出约束条件的可行域,利用目标函数的最优解求解即可【解答】解:x、y满足约束条件,表示的可行域如图:目标函数z=x+2y经过C点时,函数取得最小值,由解得C(2,1),目标函数的最小值为:4目标函数的范围是4,+)故选:D【点评】本题考查线性规划的简单应用,画出可行域判断目标函数的最优解是解题的关键5(4分)(2017浙江)若函数f(x)=x2+ax+b在区间0,1上的最大值是M,最小值是m,则Mm()A与a有关,且与b有关B与a有关,但与b无关C与a无关,且与b无关D与a无关,但与b有关【考点】3W:二次函数的性质菁优网版权所有【专题】32 :分类讨论;4C :分类法;51 :函数的性质及应用【分析】结合二次函数的图象和性质,分类讨论不同情况下Mm的取值与a,b的关系,综合可得答案【解答】解:函数f(x)=x2+ax+b的图象是开口朝上且以直线x=为对称轴的抛物线,当1或0,即a2,或a0时,函数f(x)在区间0,1上单调,此时Mm=|f(1)f(0)|=|a+1|,故Mm的值与a有关,与b无关当1,即2a1时,函数f(x)在区间0,上递减,在,1上递增,且f(0)f(1),此时Mm=f(0)f()=,故Mm的值与a有关,与b无关当0,即1a0时,函数f(x)在区间0,上递减,在,1上递增,且f(0)f(1),此时Mm=f(1)f()=1+a+,故Mm的值与a有关,与b无关综上可得:Mm的值与a有关,与b无关故选:B【点评】本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质,是解答的关键6(4分)(2017浙江)已知等差数列an的公差为d,前n项和为Sn,则“d0”是“S4+S62S5”的()A充分不必要条件B必要不充分条件C充分必要条件D既不充分也不必要条件【考点】2L:必要条件、充分条件与充要条件的判断菁优网版权所有【专题】11 :计算题;35 :转化思想;4R:转化法;54 :等差数列与等比数列;5L :简易逻辑【分析】根据等差数列的求和公式和S4+S62S5,可以得到d0,根据充分必要条件的定义即可判断【解答】解:S4+S62S5,4a1+6d+6a1+15d2(5a1+10d),21d20d,d0,故“d0”是“S4+S62S5”充分必要条件,故选:C【点评】本题借助等差数列的求和公式考查了充分必要条件,属于基础题7(4分)(2017浙江)函数y=f(x)的导函数y=f(x)的图象如图所示,则函数y=f(x)的图象可能是()ABCD【考点】3O:函数的图象菁优网版权所有【专题】31 :数形结合;44 :数形结合法;52 :导数的概念及应用【分析】根据导数与函数单调性的关系,当f(x)0时,函数f(x)单调递减,当f(x)0时,函数f(x)单调递增,根据函数图象,即可判断函数的单调性,然后根据函数极值的判断,即可判断函数极值的位置,即可求得函数y=f(x)的图象可能【解答】解:由当f(x)0时,函数f(x)单调递减,当f(x)0时,函数f(x)单调递增,则由导函数y=f(x)的图象可知:f(x)先单调递减,再单调递增,然后单调递减,最后单调递增,排除A,C,且第二个拐点(即函数的极大值点)在x轴上的右侧,排除B,故选D【点评】本题考查导数的应用,考查导数与函数单调性的关系,考查函数极值的判断,考查数形结合思想,属于基础题8(4分)(2017浙江)已知随机变量i满足P(i=1)=pi,P(i=0)=1pi,i=1,2若0p1p2,则()AE(1)E(2),D(1)D(2)BE(1)E(2),D(1)D(2)CE(1)E(2),D(1)D(2)DE(1)E(2),D(1)D(2)【考点】CH:离散型随机变量的期望与方差菁优网版权所有【专题】11 :计算题;34 :方程思想;49 :综合法;5I :概率与统计【分析】由已知得0p1p2,1p21p11,求出E(1)=p1,E(2)=p2,从而求出D(1),D(2),由此能求出结果【解答】解:随机变量i满足P(i=1)=pi,P(i=0)=1pi,i=1,2,0p1p2,1p21p11,E(1)=1p1+0(1p1)=p1,E(2)=1p2+0(1p2)=p2,D(1)=(1p1)2p1+(0p1)2(1p1)=,D(2)=(1p2)2p2+(0p2)2(1p2)=,D(1)D(2)=p1p12()=(p2p1)(p1+p21)0,E(1)E(2),D(1)D(2)故选:A【点评】本题考查离散型随机变量的数学期望和方差等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查数形结合思想、化归与转化思想,是中档题9(4分)(2017浙江)如图,已知正四面体DABC(所有棱长均相等的三棱锥),P、Q、R分别为AB、BC、CA上的点,AP=PB,=2,分别记二面角DPRQ,DPQR,DQRP的平面角为、,则()ABCD【考点】MT:二面角的平面角及求法菁优网版权所有【专题】5F :空间位置关系与距离;5G :空间角;5H :空间向量及应用【分析】解法一:如图所示,建立空间直角坐标系设底面ABC的中心为O不妨设OP=3则O(0,0,0),P(0,3,0),C(0,6,0),D(0,0,6),Q,R,利用法向量的夹角公式即可得出二面角解法二:如图所示,连接OP,OQ,OR,过点O分别作垂线:OEPR,OFPQ,OGQR,垂足分别为E,F,G,连接DE,DF,DG可得tan=tan=,tan=由已知可得:OEOGOF即可得出【解答】解法一:如图所示,建立空间直角坐标系设底面ABC的中心为O不妨设OP=3则O(0,0,0),P(0,3,0),C(0,6,0),D(0,0,6),Q,R,=,=(0,3,6),=(,5,0),=,=设平面PDR的法向量为=(x,y,z),则,可得,可得=,取平面ABC的法向量=(0,0,1)则cos=,取=arccos同理可得:=arccos=arccos解法二:如图所示,连接OP,OQ,OR,过点O分别作垂线:OEPR,OFPQ,OGQR,垂足分别为E,F,G,连接DE,DF,DG设OD=h则tan=同理可得:tan=,tan=由已知可得:OEOGOFtantantan,为锐角故选:B【点评】本题考查了空间角、空间位置关系、正四面体的性质、法向量的夹角公式,考查了推理能力与计算能力,属于难题10(4分)(2017浙江)如图,已知平面四边形ABCD,ABBC,AB=BC=AD=2,CD=3,AC与BD交于点O,记I1=,I2=,I3=,则()AI1I2I3BI1I3I2CI3I1I2DI2I1I3【考点】9R:平面向量数量积的运算菁优网版权所有【专题】31 :数形结合;48 :分析法;5A :平面向量及应用【分析】根据向量数量积的定义结合图象边角关系进行判断即可【解答】解:ABBC,AB=BC=AD=2,CD=3,AC=2,AOB=COD90,由图象知OAOC,OBOD,0,0,即I3I1I2,故选:C【点评】本题主要考查平面向量数量积的应用,根据图象结合平面向量数量积的定义是解决本题的关键二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分11(4分)(2017浙江)我国古代数学家刘徽创立的“割圆术”可以估算圆周率,理论上能把的值计算到任意精度,祖冲之继承并发展了“割圆术”,将的值精确到小数点后七位,其结果领先世界一千多年,“割圆术”的第一步是计算单位圆内接正六边形的面积S6,S6=【考点】CE:模拟方法估计概率菁优网版权所有【专题】31 :数形结合;4O:定义法;5B :直线与圆【分析】根据题意画出图形,结合图形求出单位圆的内接正六边形的面积【解答】解:如图所示,单位圆的半径为1,则其内接正六边形ABCDEF中,AOB是边长为1的正三角形,所以正六边形ABCDEF的面积为S6=611sin60=故答案为:【点评】本题考查了已知圆的半径求其内接正六边形面积的应用问题,是基础题12(6分)(2017浙江)已知a、bR,(a+bi)2=3+4i(i是虚数单位),则a2+b2=5,ab=2【考点】A5:复数代数形式的乘除运算菁优网版权所有【专题】34 :方程思想;35 :转化思想;5N :数系的扩充和复数【分析】a、bR,(a+bi)2=3+4i(i是虚数单位),可得3+4i=a2b2+2abi,可得3=a2b2,2ab=4,解出即可得出【解答】解:a、bR,(a+bi)2=3+4i(i是虚数单位),3+4i=a2b2+2abi,3=a2b2,2ab=4,解得ab=2,则a2+b2=5,故答案为:5,2【点评】本题考查了复数的运算法则、复数的相等、方程的解法,考查了推理能力与计算能力,属于基础题13(6分)(2017浙江)已知多项式(x+1)3(x+2)2=x5+a1x4+a2x3+a3x2+a4x+a5,则a4=16,a5=4【考点】DC:二项式定理的应用菁优网版权所有【专题】11 :计算题;35 :转化思想;5P :二项式定理【分析】利用二项式定理的展开式,求解x的系数就是两个多项式的展开式中x与常数乘积之和,a5就是常数的乘积【解答】解:多项式(x+1)3(x+2)2=x5+a1x4+a2x3+a3x2+a4x+a5,(x+1)3中,x的系数是:3,常数是1;(x+2)2中x的系数是4,常数是4,a4=34+14=16;a5=14=4故答案为:16;4【点评】本题考查二项式定理的应用,考查计算能力,是基础题14(6分)(2017浙江)已知ABC,AB=AC=4,BC=2,点D为AB延长线上一点,BD=2,连结CD,则BDC的面积是,cosBDC=【考点】HT:三角形中的几何计算菁优网版权所有【专题】11 :计算题;35 :转化思想;44 :数形结合法;58 :解三角形【分析】如图,取BC得中点E,根据勾股定理求出AE,再求出SABC,再根据SBDC=SABC即可求出,根据等腰三角形的性质和二倍角公式即可求出【解答】解:如图,取BC得中点E,AB=AC=4,BC=2,BE=BC=1,AEBC,AE=,SABC=BCAE=2=,BD=2,SBDC=SABC=,BC=BD=2,BDC=BCD,ABE=2BDC在RtABE中,cosABE=,cosABE=2cos2BDC1=,cosBDC=,故答案为:,【点评】本题考查了解三角形的有关知识,关键是转化,属于基础题15(6分)(2017浙江)已知向量、满足|=1,|=2,则|+|+|的最小值是4,最大值是【考点】3H:函数的最值及其几何意义;93:向量的模菁优网版权所有【专题】11 :计算题;31 :数形结合;44 :数形结合法;51 :函数的性质及应用【分析】通过记AOB=(0),利用余弦定理可可知|+|=、|=,进而换元,转化为线性规划问题,计算即得结论【解答】解:记AOB=,则0,如图,由余弦定理可得:|+|=,|=,令x=,y=,则x2+y2=10(x、y1),其图象为一段圆弧MN,如图,令z=x+y,则y=x+z,则直线y=x+z过M、N时z最小为zmin=1+3=3+1=4,当直线y=x+z与圆弧MN相切时z最大,由平面几何知识易知zmax即为原点到切线的距离的倍,也就是圆弧MN所在圆的半径的倍,所以zmax=综上所述,|+|+|的最小值是4,最大值是故答案为:4、【点评】本题考查函数的最值及其几何意义,考查数形结合能力,考查运算求解能力,涉及余弦定理、线性规划等基础知识,注意解题方法的积累,属于中档题16(4分)(2017浙江)从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人服务队,要求服务队中至少有1名女生,共有660种不同的选法(用数字作答)【考点】D9:排列、组合及简单计数问题菁优网版权所有【专题】11 :计算题;32 :分类讨论;4O:定义法;5O :排列组合【分析】由题意分两类选1女3男或选2女2男,再计算即可【解答】解:第一类,先选1女3男,有C63C21=40种,这4人选2人作为队长和副队有A42=12种,故有4012=480种,第二类,先选2女2男,有C62C22=15种,这4人选2人作为队长和副队有A42=12种,故有1512=180种,根据分类计数原理共有480+180=660种,故答案为:660【点评】本题考查了分类计数原理和分步计数原理,属于中档题17(4分)(2017浙江)已知aR,函数f(x)=|x+a|+a在区间1,4上的最大值是5,则a的取值范围是(,【考点】3H:函数的最值及其几何意义菁优网版权所有【专题】11 :计算题;35 :转化思想;49 :综合法;51 :函数的性质及应用【分析】通过转化可知|x+a|+a5且a5,进而解绝对值不等式可知2a5x+5,进而计算可得结论【解答】解:由题可知|x+a|+a5,即|x+a|5a,所以a5,又因为|x+a|5a,所以a5x+a5a,所以2a5x+5,又因为1x4,4x+5,所以2a54,解得a,故答案为:(,【点评】本题考查函数的最值,考查绝对值函数,考查转化与化归思想,注意解题方法的积累,属于中档题三、解答题(共5小题,满分74分)18(14分)(2017浙江)已知函数f(x)=sin2xcos2x2sinx cosx(xR)()求f()的值()求f(x)的最小正周期及单调递增区间【考点】3G:复合函数的单调性;GI:三角函数的化简求值;H1:三角函数的周期性及其求法;H5:正弦函数的单调性菁优网版权所有【专题】35 :转化思想;4R:转化法;57 :三角函数的图像与性质【分析】利用二倍角公式及辅助角公式化简函数的解析式,()代入可得:f()的值()根据正弦型函数的图象和性质,可得f(x)的最小正周期及单调递增区间【解答】解:函数f(x)=sin2xcos2x2sinx cosx=sin2xcos2x=2sin(2x+)()f()=2sin(2+)=2sin=2,()=2,故T=,即f(x)的最小正周期为,由2x+2k,+2k,kZ得:x+k,+k,kZ,故f(x)的单调递增区间为+k,+k或写成k+,k+,kZ【点评】本题考查的知识点是三角函数的化简求值,三角函数的周期性,三角函数的单调区间,难度中档19(15分)(2017浙江)如图,已知四棱锥PABCD,PAD是以AD为斜边的等腰直角三角形,BCAD,CDAD,PC=AD=2DC=2CB,E为PD的中点()证明:CE平面PAB;()求直线CE与平面PBC所成角的正弦值【考点】MI:直线与平面所成的角;LS:直线与平面平行的判定菁优网版权所有【专题】14 :证明题;31 :数形结合;41 :向量法;5F :空间位置关系与距离;5G :空间角【分析】()取AD的中点F,连结EF,CF,推导出EFPA,CFAB,从而平面EFC平面ABP,由此能证明EC平面PAB()连结BF,过F作FMPB于M,连结PF,推导出四边形BCDF为矩形,从而BFAD,进而AD平面PBF,由ADBC,得BCPB,再求出BCMF,由此能求出sin【解答】证明:()取AD的中点F,连结EF,CF,E为PD的中点,EFPA,在四边形ABCD中,BCAD,AD=2DC=2CB,F为中点,CFAB,平面EFC平面ABP,EC平面EFC,EC平面PAB解:()连结BF,过F作FMPB于M,连结PF,PA=PD,PFAD,推导出四边形BCDF为矩形,BFAD,AD平面PBF,又ADBC,BC平面PBF,BCPB,设DC=CB=1,则AD=PC=2,PB=,BF=PF=1,MF=,又BC平面PBF,BCMF,MF平面PBC,即点F到平面PBC的距离为,MF=,D到平面PBC的距离应该和MF平行且相等,为,E为PD中点,E到平面PBC的垂足也为垂足所在线段的中点,即中位线,E到平面PBC的距离为,在,由余弦定理得CE=,设直线CE与平面PBC所成角为,则sin=【点评】本题考查线面平行的证明,考查线面角的正弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查数形结合思想、化归与转化思想,是中档题20(15分)(2017浙江)已知函数f(x)=(x)ex(x)(1)求f(x)的导函数;(2)求f(x)在区间,+)上的取值范围【考点】6K:导数在最大值、最小值问题中的应用;6B:利用导数研究函数的单调性菁优网版权所有【专题】35 :转化思想;48 :分析法;53 :导数的综合应用【分析】(1)求出f(x)的导数,注意运用复合函数的求导法则,即可得到所求;(2)求出f(x)的导数,求得极值点,讨论当x1时,当1x时,当x时,f(x)的单调性,判断f(x)0,计算f(),f(1),f(),即可得到所求取值范围【解答】解:(1)函数f(x)=(x)ex(x),导数f(x)=(12)ex(x)ex=(1x+)ex=(1x)(1)ex;(2)由f(x)的导数f(x)=(1x)(1)ex,可得f(x)=0时,x=1或,当x1时,f(x)0,f(x)递减;当1x时,f(x)0,f(x)递增;当x时,f(x)0,f(x)递减,且xx22x1(x1)20,则f(x)0由f()=e,f(1)=0,f()=e,即有f(x)的最大值为e,最小值为f(1)=0则f(x)在区间,+)上的取值范围是0,e【点评】本题考查导数的运用:求单调区间和极值、最值,考查化简整理的运算能力,正确求导是解题的关键,属于中档题21(15分)(2017浙江)如图,已知抛物线x2=y,点A(,),B(,),抛物线上的点P(x,y)(x),过点B作直线AP的垂线,垂足为Q()求直线AP斜率的取值范围;()求|PA|PQ|的最大值【考点】KO:圆锥曲线的最值问题;KN:直线与抛物线的位置关系菁优网版权所有【专题】11 :计算题;33 :函数思想;49 :综合法;5E :圆锥曲线中的最值与范围问题【分析】()通过点P在抛物线上可设P(x,x2),利用斜率公式结合x可得结论;()通过(I)知P(x,x2)、x,设直线AP的斜率为k,联立直线AP、BP方程可知Q点坐标,进而可用k表示出、,计算可知|PA|PQ|=(1+k)3(1k),通过令f(x)=(1+x)3(1x),1x1,求导结合单调性可得结论【解答】解:()由题可知P(x,x2),x,所以kAP=x(1,1),故直线AP斜率的取值范围是:(1,1);()由(I)知P(x,x2),x,所以=(x,x2),设直线AP的斜率为k,则AP:y=kx+k+,BQ:y=x+,联立直线AP、BQ方程可知Q(,),故=(,),又因为=(1k,k2k),故|PA|PQ|=+=(1+k)3(k1),所以|PA|PQ|=(1+k)3(1k),令f(x)=(1+x)3(1x),1x1,则f(x)=(1+x)2(24x)=2(1+x)2(2x1),由于当1x时f(x)0,当x1时f(x)0,故f(x)max=f()=,即|PA|PQ|的最大值为【点评】本题考查圆锥曲线的最值问题,考查运算求解能力,考查函数思想,注意解题方法的积累,属于中档题22(15分)(2017浙江)已知数列xn满足:x1=1,xn=xn+1+ln(1+xn+1)(nN*),证明:当nN*时,()0xn+1xn;()2xn+1xn;()xn【考点】8H:数列递推式;8K:数列与不等式的综合菁优网版权所有【专题】15 :综合题;33 :函数思想;35 :转化思想;49 :综合法;4M:构造法;53 :导数的综合应用;54 :等差数列与等比数列;55 :点列、递归数列与数学归纳法;5T :不等式【分析】()用数学归纳法即可证明,()构造函数,利用导数判断函数的单调性,把数列问题转化为函数问题,即可证明,()由2xn+1xn得2()0,继续放缩即可证明【解答】解:()用数学归纳法证明:xn0,当n=1时,x1=10,成立,假设当n=k时成立,则xk0,那么n=k+1时,若xk+10,则0xk=xk+1+ln(1+xk+1)0,矛盾,故xn+10,因此xn0,(nN*)xn=xn+1+ln(1+xn+1)xn+1,因此0xn+1xn(nN*),()由xn=xn+1+ln(1+xn+1)得xnxn+14xn+1+2xn=xn+122xn+1+(xn+1+2)ln(1+xn+1),记函数f(x)=x22x+(x+2)ln(1+x),x0f(x)=+ln(1+x)0,f(x)在(0,+)上单调递增,f(x)f(0)=0,因此xn+122xn+1+(xn+1+2)ln(1+xn+1)0,故2xn+1xn;()xn=xn+1+ln(1+xn+1)xn+1+xn+1=2xn+1,xn,由2xn+1xn得2()0,2()2n1()=2n2,xn,综上所述xn【点评】本题考查了数列的概念,递推关系,数列的函数的特征,导数和函数的单调性的关系,不等式的证明,考查了推理论证能力,分析解决问题的能力,运算能力,放缩能力,运算能力,属于难题参与本试卷答题和审题的老师有:qiss;whgcn;豫汝王世崇;铭灏2016;zlzhan;沂蒙松;maths;742048;cst;双曲线(排名不分先后)菁优网2017年8月1日考点卡片1并集及其运算【知识点的认识】由所有属于集合A或属于集合B的元素的组成的集合叫做A与B的并集,记作AB符号语言:AB=x|xA或xB图形语言:AB实际理解为:x仅是A中元素;x仅是B中的元素;x是A且是B中的元素运算形状:AB=BAA=AAA=AABA,ABBAB=BABAB=,两个集合都是空集A(CUA)=UCU(AB)=(CUA)(CUB)【解题方法点拨】解答并集问题,需要注意并集中:“或”与“所有”的理解不能把“或”与“且”混用;注意并集中元素的互异性不能重复【命题方向】掌握并集的表示法,会求两个集合的并集,命题通常以选择题、填空题为主,也可以与函数的定义域,值域联合命题2必要条件、充分条件与充要条件的判断【知识点的认识】 正确理解和判断充分条件、必要条件、充要条件和非充分非必要以及原命题、逆命题否命题、逆否命题的概念是本节的重点;掌握逻辑推理能力和语言互译能力,对充要条件概念本质的把握是本节的难点1充分条件:对于命题“若p则q”为真时,即如果p成立,那么q一定成立,记作“pq”,称p为q的充分条件意义是说条件p充分保证了结论q的成立,换句话说要使结论q成立,具备条件p就够了当然q成立还有其他充分条件如p:x6,q:x2,p是q成立的充分条件,而r:x3,也是q成立的充分条件必要条件:如果q成立,那么p成立,即“qp”,或者如果p不成立,那么q一定不成立,也就是“若非p则非q”,记作“pq”,这是就说条件p是q的必要条件,意思是说条件p是q成立的必须具备的条件充要条件:如果既有“pq”,又有“qp”,则称条件p是q成立的充要条件,或称条件q是p成立的充要条件,记作“pq”2从集合角度看概念:如果条件p和结论q的结果分别可用集合P、Q 表示,那么“pq”,相当于“PQ”即:要使xQ成立,只要xP就足够了有它就行“qp”,相当于“PQ”,即:为使xQ成立,必须要使xP缺它不行“pq”,相当于“P=Q”,即:互为充要的两个条件刻画的是同一事物3当命题“若p则q”为真时,可表示为,则我们称p为q的充分条件,q是p的必要条件这里由,得出p为q的充分条件是容易理解的但为什么说q是p的必要条件呢?事实上,与“”等价的逆否命题是“”它的意义是:若q不成立,则p一定不成立这就是说,q对于p是必不可少的,所以说q是p的必要条件4“充要条件”的含义,实际上与初中所学的“等价于”的含义完全相同也就是说,如果命题p等价于命题q,那么我们说命题p成立的充要条件是命题q成立;同时有命题q成立的充要条件是命题p成立【解题方法点拨】1借助于集合知识加以判断,若PQ,则P是Q的充分条件,Q是的P的必要条件;若P=Q,则P与Q互为充要条件2等价法:

    注意事项

    本文(高考卷 浙江省高考数学试卷.doc)为本站会员(小****库)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开