欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    一个新的借贷模型.doc

    • 资源ID:4020412       资源大小:229.73KB        全文页数:4页
    • 资源格式: DOC        下载积分:30金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要30金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    一个新的借贷模型.doc

    一个新的借贷模型艾小莲 赵明清 (山东科技大学信息科学与工程学院金融工程研究所,泰安,271019) 摘要 本文在一般借贷模型的基础上给出了一个新的借贷模型用以解决多重收益率问题,并分析说明了该模型是可行有效的。最后,用一个实例进行了验证。关键词 收益率 现值 积累值 投资余额 模型 1 引言收益率是这样的利率,按此利率投资返回的现值等于投资投入的现值。它常被用作一项指标用以度量一项特定的业务受欢迎或不受欢迎的程度。从贷方的观点看,收益率越高越受欢迎;从借方的观点看则情况相反。在大多数常见的金融业务中收益率是唯一的,但也会碰到一些金融业务,其中的收益率并不唯一,也即存在多重收益率。在这样的场合要对某些金融计算找出合理的解释及对不同的金融业务作出比较就会遇到一些困难。目前解决多重收益率的方法多采用一般借贷模型,本文在此基础上构造的一个新的借贷模型可以-有效地解决多重收益率问题。一般求收益率的方法是求解多项式方程: (1) 其中是第期的投资余额;表示投资时期;表示各时期利率;为正值表示第时期的投入,为负值表示第时期的返回。第期的投资余额是这样定义的:且。方程(1)可能只有一个正根,即对应唯一的收益率;也可能有多个正根,即对应多重收益率。2 现有解决多重收益率的方法 实践中曾提出各种方法以回避多重收益率带来的内在问题: 一种方法是将未来的投资返回按一规定的利率贴现,然后仅基于未来的投资投入来完成其计算,即对(=1,2,)按gv是否大于零进行分类。若小于零,则把它贴现个时期到初始现值,然后再按一般求收益率的方法计算,不妨称之为预先设立基金法。该方法也就是求解下列多项式方程:另一种方法是基于这样的前提:投资者在投资期间处于贷款人位置时的利率不同于他处于借款人位置时的利率。看投资者是贷款人还是借款人主要是看投资余额。当投资者处于贷款人位置,即投资余额时,可接受利率称为项目投资率,记为,此时有;当投资人处于借款人位置,即 <时,可接受利率称为项目借通讯地址:山东科技大学研究生99级(271019) 艾小莲 联系电话:0538-6211481(H) 贷率,记为,此时有。这样收益率就不是单个的数了,而是和之间的一个函数关系,如果对一个给定的,可以找到一个的值,使,则称和为此项业务的收益率对。一般来说,会大于,因为一个精明的投资者作为贷款人时的可接受利率会比作为借款人时的可接受利率要大。该方法也就是求解下列多项式方程:其中,为整数,且,。的含义是从时期 到时期中使用利率的时期总数,而其余时期用利率。该方法即所谓的一般借贷模型。 3 模型建立 在一般的借贷模型中或,即本期的投资余额是上一期的投资余额在本期的积累值与本期的投入进行代数运算。当为负,即有返回时就会发生抵消。不过在现实生活中我们会碰到这样的问题:一个人在银行既有存款(贷款),又有借款。从个人来说他可能愿意存款与借款相抵消,不过从银行,也即投资者来说,就不愿意这样两项款项相抵消了。既然一个精明的投资者作为贷款人时的可接受利率会比作为借款人时的可接受利率大,那么他在既有贷款(投入),又有借款(返回)的情况下,就可能会以不同的收益率看待这两笔款项,即投入与返回不发生抵消。因此,我们可以针对这种情况来建立一个模型,该模型同样引入了收益率对的概念。首先对 (=1,2,) 按是否大于零进行分类,若大于零,则按 投资利率计算;若小于零,则按借贷利率计算。其次引入两个符号和:表示时期的借款余额,且,;表示时期的贷款余额,且,。令 =则表示第时期的借贷余额,且,。 求解下列多项式方程就可得收益率对中的与的关系。对给定的,令是一小于零的实数。根据Descartes定理(实系数多项式的正根的个数等于其系数序列中各项的变号数,或者比变号数少偶数个。每个根按其重数计算个数;在计算变号数时,零系数忽略不计。如果已知给定多项式的一切根都是实根,则Descartes定理给出根的准确个数)可知,以上多项式方程只有一个正的实根,也就是说和是一一对应的。4 模型间的比较 若把看成,则其含义可解释为每笔资金(投入、返回)先贴现到期初,再积累到期末。(1)式的含义是把每笔资金均按收益率贴现、积累;(2)式是把资金返回按事先给定的一个利率来贴现,而资金投入的贴现、积累和资金返回的积累均按收益率来计算。(3)式是通过计算投资余额来分类的。若投资余额大于0,则按投资利率贴现、积累,若投资余额小于0,则按借贷利率贴现、积累。(4)式是通过区分资金投入与资金返回来计算的。资金投入按投资利率贴现、积累,资金返回则按借贷利率贴现、积累。对(4)式,如果令,则(4)式变为(1)式;在计算方面,按(4)式计算要比按(2)、(3)式都要简单。由此可以说,新建模型更具有效性。 5 实例说明 假设一位投资者欲立即投资$,第2年之末再投资$,以换取在第1年之末收到$。 (1)求收益率。 按(1)式,可得求值方程为:解此二次方程的两个根为 或由此,这是一笔有多重收益率的业务。 (2)如果是多重收益率业务,给出解决方法。解决方法1: 按(2)式,可得多项式方程如下:解得.解决方法2: 按(3)式,可得多项式方程如下:解得.解决方法3: 按(4)式,可得多项式方程如下:解得. 从以上三个方法中可以看到:对一给定的,均可找到唯一的与之对应,这使得该多重收益率业务可与其他业务进行比较。 3)如果,投资者会接受还是拒绝这笔业务? 根据一般借贷模型,有:因,所以投资者拒绝接受这笔业务。 根据新建模型,有:因,所以投资者拒绝这笔业务。 不管用解决方法中的哪一种,其所得结果都是一样的。由此我们可以说新建模型不仅是可行的,而且是有效的。参考文献1 SG凯利森著,尚汉冀译.利息理论.上海科学技术出版社,1998:151-152,178-182A new Financing ModelAi Xiaolian Zhao Mingqing(Institute of Finance Engineering, College of Information Science & Engineering,SDUST,Taian, 271019) Abstract On the basis of the general financing model, this paper promotes a new financing model to solve multi-ply yield rate, which is showed feasible by an example later.Keywords Yield rate Present value Investment balance Credit Model

    注意事项

    本文(一个新的借贷模型.doc)为本站会员(帮****)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开