等比数列的前项和讲稿.ppt
关于等比数列的前项和第一页,讲稿共十七页哦等比数列通项公式等比数列通项公式:)0,0(111nqaqaan等比数列的定义等比数列的定义:)0(1qqaann等比数列的性质等比数列的性质:qpnmaaaa则有 )Nqp,n,(m,qpnm,且是等比数列若namnmnqaa 或第二页,讲稿共十七页哦各个格子里的麦粒数依次是发明者要求的麦粒总数就是1+2+21+2+23 3+2+26363=国王能否满足发明者的要求?国王能否满足发明者的要求?1,2,2 22 2 ,263第三页,讲稿共十七页哦如何求出这个和式的具体数值呢如何求出这个和式的具体数值呢?问题问题1:1:发明者要求的麦粒总数是:发明者要求的麦粒总数是:S S6464=1+2+2=1+2+22 2+2+26363第四页,讲稿共十七页哦问题问题2:,1a,2a,3a,na1231?nnnSaaaaa第五页,讲稿共十七页哦前前n n项和项和 S Sn n=a a1 1+a a2 2+a a3 3+a an n 两边同乘两边同乘q得得:qSn=a1q+a1q2+a+a1q qn-1+a a1q qn 由得由得:(1q)sna1a1qn所以,当所以,当q1时时,q1)q1(asn1n问题问题:如果:如果q=1时时,Sn=?n=a1+a1q+a1q2+a+a1q qn-1 由等比数列的通项公式得:由等比数列的通项公式得:na1错位相减法错位相减法第六页,讲稿共十七页哦,1a,2a,3a,na1naSn 当当q=1时:时:由此得到:由此得到:)1(1)1(1 qqqaSnn第七页,讲稿共十七页哦1.1.前前n n项和公式项和公式 是用是用错位相减法错位相减法得到得到的的;2.2.当已知当已知a a1 1,q,n,q,n时用前一个公式时用前一个公式,当已知当已知a a1 1,q,a,q,an n时用后时用后一个公式一个公式;3.3.在应用公式求和时在应用公式求和时,应注意到公式的使用条件为应注意到公式的使用条件为q1,q1,而当而当q=1q=1时时,应按常数列求和应按常数列求和,即即s sn n=na=na1 14.4.在没有指出在没有指出q1q1时时,应分应分q1q1和和q=1q=1两种情况讨论两种情况讨论.q1)q1(asn1n第八页,讲稿共十七页哦.,161,81,41,21 )1(例例1、求下列等比数列前、求下列等比数列前8项的和:项的和:0,2431,27 )2(91 qaa第九页,讲稿共十七页哦1.根据下列各题中的条件根据下列各题中的条件,求出相应求出相应等比数列等比数列 的前的前n项和项和 nanS6,2,3)1(1nqa21,21,8)2(1naqa18921)21(3)1(6 nS答案211521121218)2(nS第十页,讲稿共十七页哦na2.在等比数列数列在等比数列数列 中中441,96,5.1)1(Sqaa和求已知515,831,21)2(aaSq和求已知812)2(215314)1(51414aaqqaaSq答案第十一页,讲稿共十七页哦第一年第一年第二年第二年第三年第三年第第n年年50005000(1+10%)5000(1+10%)25000(1+10%)n-1例例2.某商场第一年销售计算机某商场第一年销售计算机5000台台,如如果平均每年的销售量比上一年增加果平均每年的销售量比上一年增加10%,那么从第一年起那么从第一年起,约几年内可使总销售量约几年内可使总销售量达到达到30000台台(保留到各位保留到各位)?第十二页,讲稿共十七页哦例例2.某商场第一年销售计算机某商场第一年销售计算机5000台台,如如果平均每年的销售量比上一年增加果平均每年的销售量比上一年增加10%,那么从第一年起那么从第一年起,约几年内可使总销售量达约几年内可使总销售量达到到30000台台(保留到各位保留到各位)?,:增加的百分率相同每年的销售量比上一年根据题意解,na等比数列每年的销售量组成一个所以从第一年起50001a1.1%101q30000nSqqaSnn1)1(1300001.11)1.11(5000n即6.11.1n即6.1lg1.1lg,n得两边取对数5n得答答:约约5年内可以使总销售量达到年内可以使总销售量达到30000台台.第十三页,讲稿共十七页哦)1(4321132 xnxxxxn1324321:nnnxxxxS设解xnxxxSxnnn 1)1(1,1 2所以又nnnnxxxxSx 121)1(nnnnxxxSx 1)1(1)1(nnnnxxnxxxxS 132)1(32 则第十四页,讲稿共十七页哦、求和:求和:.nnnS2164834221 n为等比数列,公比为,利用错位相减法求和为等比数列,公比为,利用错位相减法求和.设,其中为等差数列,设,其中为等差数列,nnnnna212n2121第十五页,讲稿共十七页哦v由由 Sn.an,q,a1 ,n 知三而可求二知三而可求二.)1()1(1)1()1(1)1(1111qnaqqqaaSqnaqqqaSnnnn或v.理解等比数列的推导过程理解等比数列的推导过程(错位相减错位相减)并并能应用能应用.第十六页,讲稿共十七页哦感谢大家观看感谢大家观看第十七页,讲稿共十七页哦