高考卷 普通高等学校招生考试上海卷 数学 (理科) 全解全析.doc
-
资源ID:4064330
资源大小:882KB
全文页数:9页
- 资源格式: DOC
下载积分:7金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
高考卷 普通高等学校招生考试上海卷 数学 (理科) 全解全析.doc
2007年全国普通高等学校招生统一考试(上海卷)数 学 (理 科) 全解全析一、填空题(本大题满分44分)本大题共有11题,只要求直接填写结果,每个空格填对得4分,否则一律得零分 1、函数的定义域为【答案】 【解析】 2、已知与,若两直线平行,则的值为 【答案】 【解析】 3、函数的反函数【答案】 【解析】由4、方程的解是【答案】 【解析】 (舍去),。5、已知,且,则的最大值为【答案】 【解析】 ,当且仅当x=4y=时取等号.6、函数的最小正周期是【答案】 【解析】 。7、有数字,若从中任取三个数字,剩下两个数字为奇数的概率为【答案】 【解析】 8、已知双曲线,则以双曲线中心为焦点,以双曲线左焦点为顶点的抛物线方程为【答案】 【解析】双曲线的中心为O(0,0),该双曲线的左焦点为F(3,0)则抛物线的顶点为(3,0),焦点为(0,0),所以p=6,所以抛物线方程是)9、若为非零实数,则下列四个命题都成立: 若,则若,则。则对于任意非零复数,上述命题仍然成立的序号是。【答案】 【解析】 对于:解方程得 a= i,所以非零复数 a = i 使得,不成立;显然成立;对于:在复数集C中,|1|=|i|,则 ,所以不成立;显然成立。则对于任意非零复数,上述命题仍然成立的所有序号是 10、平面内两直线有三种位置关系:相交,平行与重合。已知两个相交平面与两直线,又知在内的射影为,在内的射影为。试写出与满足的条件,使之一定能成为是异面直线的充分条件 【答案】 ,并且与相交(,并且与相交)【解析】 作图易得“能成为是异面直线的充分条件”的是“,并且与相交”或“,并且与相交”。11、已知圆的方程,为圆上任意一点(不包括原点)。直线的倾斜角为弧度,则的图象大致为 【答案】 【解析】 二、选择题(本大题满分16分)本大题共有4 题,每题都给出代号为A,B,C,D的四个结论,其中有且只有一个结论是正确的,必须把正确结论的代号写在题后的圆括号内,选对得4分,不选、选错或者选出的代号超过一个(不论是否都写在圆括号内),一律得零分12、已知是实系数一元二次方程的两根,则的值为 A、 B、 C、 D、【答案】A 【解析】 因为2+ a i,b+i( i 是虚数单位)是实系数一元二次方程的两个根,所以a=1,b=2,所以实系数一元二次方程的两个根是 所以。13、已知为非零实数,且,则下列命题成立的是A、 B、 C、 D、【答案】C 【解析】若a<b<0a2>b2,A不成立;若B不成立;若a=1,b=2,则,所以D不成立 ,故选C。14、在直角坐标系中,分别是与轴,轴平行的单位向量,若直角三角形中,则的可能值有A、1个 B、2个 C、3个 D、4个【答案】B 【解析】解法一: (1) 若A为直角,则; (2) 若B为直角,则;(3) 若C为直角,则。所以 k 的可能值个数是2,选B 解法二:数形结合如图,将A放在坐标原点,则B点坐标为(2,1),C点坐标为(3,k),所以C点在直线x=3上,由图知,只可能A、B为直角,C不可能为直角所以 k 的可能值个数是2,选B15、已知是定义域为正整数集的函数,对于定义域内任意的,若 成立,则成立,下列命题成立的是A、若成立,则对于任意,均有成立;B、若成立,则对于任意的,均有成立;C、若成立,则对于任意的,均有成立;D、若成立,则对于任意的,均有成立。【答案】D 【解析】 对A,当k=1或2时,不一定有成立;对B,应有成立;对C,只能得出:对于任意的,均有成立,不能得出:任意的,均有成立;对D,对于任意的,均有成立。故选D。三、解答题(本大题满分90分)本大题共有6题,解答下列各题必须写出必要的步骤16、体积为1的直三棱柱中,求直线与平面所成角。 【解析】法一: 由题意,可得体积,连接 ,平面,是直线与平面所成的角 ,则 即直线与平面所成角的大小为法二: 由题意,可得 体积, , 如图,建立空间直角坐标系 得点, 则,平面的法向量为 设直线与平面所成的角为,与的夹角为, 则, , 即直线与平面所成角的大小为 17、在三角形中,求三角形的面积。【解析】 由题意,得为锐角, , 由正弦定理得 , 18、近年来,太阳能技术运用的步伐日益加快,已知2002年全球太阳能年生产量为670兆瓦,年增长率为34%。在此后的四年里,增长率以每年2%的速度增长(例如2003年的年生产量增长率为36%)(1)求2006年的太阳能年生产量(精确到0.1兆瓦)(2)已知2006年太阳能年安装量为1420兆瓦,在此后的4年里年生产量保持42%的增长率,若2010年的年安装量不少于年生产量的95%,求4年内年安装量的增长率的最小值(精确到0.1%)【解析】(1)由已知得2003,2004,2005,2006年太阳电池的年生产量的增长率依次为 ,则2006年全球太阳电池的年生产量为 (兆瓦) (2)设太阳电池的年安装量的平均增长率为,则解得 因此,这四年中太阳电池的年安装量的平均增长率至少应达到19、已知函数(1)判断的奇偶性 (2)若在是增函数,求实数的范围【解析】(1)当时, 对任意, 为偶函数 当时, 取,得 , , 函数既不是奇函数,也不是偶函数 (2)解法一:设, , 要使函数在上为增函数,必须恒成立 ,即恒成立 又, 的取值范围是 解法二:当时,显然在为增函数 当时,反比例函数在为增函数,在为增函数 当时,同解法一 20、若有穷数列(是正整数),满足即(是正整数,且),就称该数列为“对称数列”。(1)已知数列是项数为7的对称数列,且成等差数列,试写出的每一项(2)已知是项数为的对称数列,且构成首项为50,公差为的等差数列,数列的前项和为,则当为何值时,取到最大值?最大值为多少?(3)对于给定的正整数,试写出所有项数不超过的对称数列,使得成为数列中的连续项;当时,试求其中一个数列的前2008项和【解析】(1)设的公差为,则,解得 , 数列为 (2), , 当时,取得最大值的最大值为626 (3)所有可能的“对称数列”是: ; ; ; 对于,当时, 当时, 对于,当时, 当时, 对于,当时, 当时, 对于,当时, 当时,21、已知半椭圆与半椭圆组成的曲线称为“果圆”,其中。如图,设点,是相应椭圆的焦点,和,是“果圆” 与,轴的交点,(1)若三角形是边长为1的等边三角形,求“果圆”的方程;(2)若,求的取值范围;(3)一条直线与果圆交于两点,两点的连线段称为果圆的弦。是否存在实数,使得斜率为的直线交果圆于两点,得到的弦的中点的轨迹方程落在某个椭圆上?若存在,求出所有的值;若不存在,说明理由。yO.Mx【解析】(1) , 于是,所求“果圆”方程为 , (2)由题意,得 ,即 ,得 又 (3)设“果圆”的方程为, 记平行弦的斜率为当时,直线与半椭圆的交点是,与半椭圆的交点是 的中点满足 得 , 综上所述,当时,“果圆”平行弦的中点轨迹总是落在某个椭圆上 当时,以为斜率过的直线与半椭圆的交点是 由此,在直线右侧,以为斜率的平行弦的中点轨迹在直线上,即不在某一椭圆上 当时,可类似讨论得到平行弦中点轨迹不都在某一椭圆上