理科数学-全真模拟卷04(新课标Ⅲ卷)(原卷版).docx
-
资源ID:4142369
资源大小:343.09KB
全文页数:8页
- 资源格式: DOCX
下载积分:10金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
理科数学-全真模拟卷04(新课标Ⅲ卷)(原卷版).docx
全真模拟卷04(新课标卷)理科数学本卷满分150分,考试时间120分钟。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知是虚数单位,复数的虚部为( )ABCD2已知集合,则( )ABCD3已知向量的夹角为,则( )AB3CD124莱茵德纸草书是世界上最古老的数学著作之一书中有一道这样的题目:把100个面包分给5个人,使每人所得成等差数列,且使较大的三份之和的是较小的两份之和,则最大的一份为( )ABCD52021年是中国共产党建党100周年.某校为了纪念党的生日,计划举办大型文艺汇演,某班选择合唱没有共产党就没有新中国这首歌.仅从逻辑学角度来看,“没有共产党就没有新中国”这句歌词中体现了“有共产党”是“有新中国”的( )A充分条件B必要条件C充要条件D既不充分也不必要条件6若满足约束条件,则的最大值是( )A2B3C4D57某三棱柱的底面为正三角形,其三视图如图所示,该三棱柱的表面积为( )ABCD8已知,且,则函数与的图象可能是( )ABCD92020年12月17日凌晨,嫦娥五号返回器携带月球样品在内蒙古四子王旗预定区域安全着陆嫦娥五号返回舱之所以能达到如此高的再入精度,主要是因为它采用弹跳式返回弹道,实现了减速和再入阶段弹道调整,这与“打水漂”原理类似(如图所示)现将石片扔向水面,假设石片第一次接触水面的速率为,这是第一次“打水漂”,然后石片在水面上多次“打水漂”,每次“打水漂”的速率为上一次的93%,若要使石片的速率低于,则至少需要“打水漂”的次数为(参考数据:取,)( )A4B5C6D710已知函数(,)的图象关于点对称,且其相邻对称轴间的距离为,将函数的图象向左平移个单位长度后,得到函数的图象,则下列说法中正确的是( )A的最小正周期BCD在上的单调递减区间为11直三棱柱中,则与面成角的正弦值为( )ABCD12已知双曲线,过其右焦点F作x轴的垂线,交双曲线于A、B两点,若双曲线的左焦点在以AB为直径的圆上,则双曲线的离心率的值为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13在二项式的展开式中,的系数为_.14设等比数列的前项和为.若、成等差数列,则数列的公比为_.15已知正方体外接球的体积是,那么该正方体的内切球的表面积为_16已知圆,直线,点,点.给出下列4个结论:当时,直线与圆相离;若直线是圆的一条对称轴,则;若直线上存在点,圆上存在点,使得,则的最大值为;为圆上的一动点,若,则的最大值为.其中所有正确结论的序号是_.三、解答题(本大题共6小题,共70分解答应写出文字说明、证明过程或演算步骤)17(本小题12分)已知中,a,b,c分别是角A,B,C的对边,.(1)求A,B,C;(2)若,求的面积.18(本小题12分)如图,正三棱柱的棱长均为2,M是侧棱的中点.(1)在图中作出平面与平面的交线l(简要说明),并证明平面;(2)求平面与平面所成二面角的余弦值.19(本小题12分)2020年1月,我国各地出现了以武汉为中心的新冠肺炎疫情,在全国人民的共同努力下,3月疫情得到初步控制.下表是某地疫情监控机构从3月1日到3月5日每天新增病例的统计数据.日期12345新增病例人数3225272016(1)若3月4日新增病例中有12名男性,现要从这天新增病例中按性别分层抽取5人,再从所抽取的5人中随机抽取2人作流行病学分析,求这2人中至少有1名女性的概率;(2)该疫情监控机构对3月1日和5日这五天的120位新增病例的洽疗过程,进行了跟踪监测,其中病症轻微的只经过一个疗程治愈出院,病症严重的最多经过三个疗程的治疗痊愈出院,统计整理出他们被洽愈的疗程数及相应的人数如下表:疗程数123相应的人数604020已知该地疫情未出现死亡病例,现用上述疗程数的频率作为相应事件的概率,该机构要从被治疔痊愈的病例中随机抽取2位进行病毒学分析,记表示所抽取的2位病例被治愈的疗程数之和,求的分布列及期望.20(本小题12分)椭圆的右焦点为,离心率为,过的直线与椭圆交于,两点,当轴时,.(1)求的方程;(2)若直线与轴交于点,直线,垂足为(不与重合),求证:直线平分线段.21(本小题12分)已知函数.(1)当时,讨论函数的单调性;(2)当时,若,且在时恒成立,求实数a的取值范围.请考生在第22、23两题中任选一题作答注意:只能做所选定的题目如果多做,则按所做的第一个题目计分22选修4-4:坐标系与参数方程(10分)在极坐标系中,以极点O为原点,极轴为x轴的正半轴,建立平面直角坐标系,己知直线1的参数方程为(t为参数,),且点P的直角坐标为.(1)求经过O,A,B三点的圆C的直角坐标方程;(2)求证:直线l与(1)中的圆C有两个交点M,N,并证明为定值.23选修4-5:不等式选讲(10分)已知函数的最小值为m.(1)画出函数的图象,利用图象写出函数最小值m;(2)若,且,求证:.8