欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    95柱、锥、球及其简单组合体(1).doc

    • 资源ID:41555672       资源大小:418.50KB        全文页数:9页
    • 资源格式: DOC        下载积分:10金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要10金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    95柱、锥、球及其简单组合体(1).doc

    【课题】9.5 柱、锥、球及其简单组合体(一)【教学目标】知识目标:(1)了解棱柱、棱锥的结构特征;(2)掌握棱柱、棱锥面积和体积计算.能力目标:培养学生的观察能力,数值计算能力及计算工具使用技能.【教学重点】正棱柱、正棱锥的结构特征及相关的计算【教学难点】正棱柱、正棱锥的相关计算【教学设计】教材首先介绍了多面体、旋转体的概念然后通过观察模型,说明棱柱、棱锥、圆柱、圆锥、球的结构特征及其面积、体积的计算公式正棱柱的侧面积、全面积、体积的计算公式经常使用,不要把侧面积、全面积计算公式记混了侧面都是全等的矩形的直四棱柱不一定是正四棱柱底面是正方形的四棱柱不一定是正四棱柱四棱锥P-ABCD中,如果棱锥的侧棱长相等,那么它一定是正四棱锥如果棱锥的底面是正方形,那么它不一定是正四棱锥例1是求正三棱柱的侧面积和体积的题目,例2是求正三棱锥的侧面积和体积的题目,要记住边长为a的正三角形的面积为【教学备品】教学课件【课时安排】2课时(90分钟)【教学过程】教 学 过 程教师行为学生行为教学意图时间*揭示课题9.5 柱、锥、球及其简单组合体【知识回顾】在九年制义务教育阶段,我们学习过直棱柱、圆柱、圆锥、球等几何体(1) (2) (3) (4)图955象直棱柱(图955(1)那样,由若干个平面多边形围成的封闭的几何体叫做多面体,围成多面体的各个多边形叫做多面体的面,两个面的公共边叫做多面体的棱,棱与棱的交点叫做多面体的顶点,不在同一个面上的两个顶点的连线叫做多面体的对角线.像圆柱(图955(2)、圆锥(图955(3)、球(图955(4)那样的封闭几何体叫做旋转体*创设情境 兴趣导入【观察】 图956观察图956所示的多面体,可以发现它们具如下特征:(1)有两个面互相平行,其余各面都是四边形;(2)每相邻两个四边形的公共边互相平行介绍质疑讲解说明引导分析了解思考思考启发学生思考引导学生分析010*动脑思考 探索新知【新知识】有两个面互相平行,其余每相邻两个面的交线都互相平行的多面体叫做棱柱,互相平行的两个面,叫做棱柱的底面,其余各面叫做棱柱的侧面相邻两个侧面的公共边叫做棱柱的侧棱两个底面间的距离,叫做棱柱的高图956所示的四个多面体都是棱柱表示棱柱时,通常分别顺次写出两个底面各个顶点的字母,中间用一条短横线隔开,例如,图956(2)所示的棱柱,可以记作棱柱,或简记作棱柱经常以棱柱底面多边形的边数来命名棱柱,如图956所示的棱柱依次为三棱柱、四棱柱、五棱柱侧棱与底面斜交的棱柱叫做斜棱柱,如图956(2);侧棱与底面垂直的棱柱叫做直棱柱,如图956(1);底面是正多边形的直棱柱叫做正棱柱,如图956(3)和(4),分别为正四棱柱和正五棱柱正棱柱有下列性质:()侧棱垂直于底面,各侧棱长都相等,并且等于正棱柱的高; ()两个底面中心的连线是正棱柱的高 想一想如果直四棱柱的侧面都是全等的矩形,它是不是正四棱柱?如果四棱柱的底面是正方形,它是不是正四棱柱?【新知识】正棱柱所有侧面的面积之和,叫做正棱柱的侧面积正棱柱的侧面积与两个底面面积之和,叫做正棱柱的全面积图957观察正棱柱的表面展开图(图957),可以得到正棱柱的侧面积、全面积计算公式分别为 (9.1) (9.2)其中,表示正棱柱底面的周长,表示正棱柱的高,表示正棱柱底面的面积. 可以得到正棱柱的体积计算公式为(公式推导略) (9.3)其中, 表示正棱锥的底面的面积,是正棱锥的高.讲解说明引领分析仔细分析关键语句思考理解记忆带领学生分析25*巩固知识 典型例题【知识巩固】例 1已知一个正三棱柱的底面边长为4 cm,高为5 cm,求这个正三棱柱的侧面积和体积解 正三棱锥的侧面积为 S侧ch3×4×5 60()由于边长为4 cm的正三角形面积为 (),所以正三棱柱的体积为=()【小提示】 边长为a的正三角形的面积为【软件连接】利用几何画板可以方便地作出棱柱的直观图形方法是:首先选中所以绘制棱柱的名称(图958),然后选择合适的位置,点击并拖动,即可得到棱柱的直观图形(图959),最后再标注字母 图958 图959说明强调引领讲解说明讲解说明观察思考主动求解思考理解通过例题进一步领会带领学生思考35*创设情境 兴趣导入观察图960所示的多面体,可以发现它们具如下特征:有一个面是多边形,其余各面都是三角形,并且这些三角形有一个公共顶点(3)图960质疑引导分析思考启发学生思考40*动脑思考 探索新知【新知识】具备上述特征的多面体叫做棱锥多边形叫做棱锥的底面(简称底),有公共顶点的三角形面叫做棱锥的侧面,各侧面的公共顶点叫做棱锥的顶点,顶点到底面的距离叫做棱锥的高底面是三角形、四边形、的棱锥分别叫做三棱锥、四棱锥、通常用表示底面各顶点的字母来表示棱锥例如,图960(2)中的棱锥记作:棱锥底面是正多边形,其余各面是全等的等腰三角形矩形的棱锥叫做正棱锥图960中(1)、(2)分别表示正三棱锥、正四棱锥正棱锥有下列性质:(1)各侧棱的长相等;(2)各侧面都是全等的等腰三角形各等腰三角形底边上的高都叫做正棱锥的斜高;(3)顶点到底面中心的连线垂直与底面,是正棱锥的高;(4)正棱锥的高、斜高与斜高在底面的射影组成一个直角三角形; (5)正棱锥的高、侧棱与侧棱在底面的射影也组成一个直角三角形【想一想】四棱锥P-ABCD中,如果棱锥的侧棱长相等,那么它是不是正四棱锥?如果棱锥的底面是正方形,那么它是不是正四棱锥?【新知识】图961观察正棱锥的表面展开图(图961),可以得到正棱锥的侧面积、全面积(表面积)计算公式分别为 (9.4) . (9.5)其中,表示正棱锥底面的周长,是正棱锥的斜高,表示正棱锥的底面的面积,是正棱锥的高.讲解说明引领分析讲解说明引领分析思考理解思考记忆带领学生分析带领学生分析52*创设情境 兴趣导入【实验】准备好同底等高的正三棱锥与正三棱柱形容器,将正三棱锥容器中装满沙子,然后倒入正三棱柱形状的容器中,发现:连续倒三次正好将正三棱柱容器装满质疑思考带领学生分析57*动脑思考 探索新知【新知识】实验表明,对于同底等高的棱锥与棱柱,棱锥的体积是棱柱体积的三分之一即. (9.6)其中, 表示正棱锥的底面的面积,是正棱锥的高.讲解说明理解记忆带领学生分析62*巩固知识 典型例题【知识巩固】例 2如图962,正三棱锥P-ABC中,点O是底面中心,PO12 cm,斜高PD13 cm求它的侧面积、体积(面积精确到0.1,体积精确到1)图962解在正三棱锥P-ABC(图962)中,高PO12 cm,斜高PD13 cm在直角三角形中,OD 5(cm)在底面正三角形ABC中,CD3OD15(cm)所以底面边长为AC10 cm所以侧面积与体积分别约为337.7()520()说明强调引领讲解说明观察思考主动求解通过例题进一步领会72*运用知识 强化练习1. 设正三棱柱的高为6,底面边长为4,求它的侧面积、全面积及体积.2. 正四棱锥的高是a,底面的边长是2a,求它的全面积与体积.提问巡视指导思考解答及时了解学生知识掌握情况80*理论升华 整体建构思考并回答下面的问题:正棱柱的侧面积、全面积、体积公式,正棱锥的侧面积、全面积、体积公式?结论:; ; ;质疑归纳强调回答及时了解学生知识掌握情况83*归纳小结 强化思想本次课学了哪些内容?重点和难点各是什么?引导回忆*自我反思 目标检测 本次课采用了怎样的学习方法?你是如何进行学习的?你的学习效果如何?设正三棱柱的高为6,底面边长为4,求它的侧面积、全面积及体积提问巡视指导反思动手求解检验学生学习效果89*继续探索 活动探究(1)读书部分:教材(2)书面作业:教材习题9.5 A组(必做);9.5 B组(选做)(3)实践调查:用发现的眼睛寻找生活中的正棱柱实例说明记录分层次要求90【教师教学后记】项目反思点学生知识、技能的掌握情况学生是否真正理解有关知识;是否能利用知识、技能解决问题;在知识、技能的掌握上存在哪些问题;学生的情感态度学生是否参与有关活动;在数学活动中,是否认真、积极、自信;遇到困难时,是否愿意通过自己的努力加以克服;学生思维情况学生是否积极思考;思维是否有条理、灵活;是否能提出新的想法;是否自觉地进行反思;学生合作交流的情况学生是否善于与人合作;在交流中,是否积极表达;是否善于倾听别人的意见;学生实践的情况学生是否愿意开展实践;能否根据问题合理地进行实践;在实践中能否积极思考;能否有意识的反思实践过程的方面;第9章 立体几何(教案)

    注意事项

    本文(95柱、锥、球及其简单组合体(1).doc)为本站会员(飞****)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开