专题32中考几何平移类问题(原卷版).docx
专题32 中考几何平移类问题1.平移的定义:平面图形的每个点沿着某一方向移动相同的距离,这样的图形运动称为平移.平移是由移动的方向和移动的距离所决定.平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。2.平移的特点:经平移运动后的图形图形的位置发生变化, 形状和大小不变.3.理解并掌握平移的三个特征:(1)对应线段平行(或在一条直线上)且相等;对应角相等.(2)对应点所连的线段平行(或在一条直线上)且相等.(3)图形在平移后形状和大小都不变.4.图形平移的画法: (1)确定点;(2)定方向;(3)定距离。【例题1】(2020广东)在平面直角坐标系中,点(3,2)关于x轴对称的点的坐标为()A(3,2)B(2,3)C(2,3)D(3,2)【对点练习】(2019湖南邵阳)一次函数y1=k1x+b1的图象l1如图所示,将直线l1向下平移若干个单位后得直线l2,l2的函数表达式为y2=k2x+b2下列说法中错误的是()Ak1=k2 Bb1b2Cb1b2 D当x=5时,y1y2【例题2】(2019桂林)如图,在平面直角坐标系中,反比例y(k0)的图象和ABC都在第一象限内,ABAC,BCx轴,且BC4,点A的坐标为(3,5)若将ABC向下平移m个单位长度,A,C两点同时落在反比例函数图象上,则m的值为 【对点练习】(2020枣庄模拟)已知:ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度)(1)画出ABC向下平移4个单位长度得到的A1B1C1,点C1的坐标是 ;(2)以点B为位似中心,在网格内画出A2B2C2,使A2B2C2与ABC位似,且位似比为2:1,点C2的坐标是 ;(3)A2B2C2的面积是 平方单位【例题3】(2020北京)在平面直角坐标系xOy中,一次函数ykx+b(k0)的图象由函数yx的图象平移得到,且经过点(1,2)(1)求这个一次函数的解析式;(2)当x1时,对于x的每一个值,函数ymx(m0)的值大于一次函数ykx+b的值,直接写出m的取值范围一、选择题1(2020菏泽)在平面直角坐标系中,将点P(3,2)向右平移3个单位得到点P,则点P关于x轴的对称点的坐标为()A(0,2)B(0,2)C(6,2)D(6,2)2.(2019哈尔滨)将抛物线向上平移3个单位长度,再向右平移2个单位长度,所得到的抛物线为( )A BC D3(2019海南)如图,在平面直角坐标系中,已知点A(2,1),点B(3,1),平移线段AB,使点A落在点A1(2,2)处,则点B的对应点B1的坐标为()A(1,1)B(1,0)C(1,0)D(3,0)4(2019广西梧州)直线y3x+1向下平移2个单位,所得直线的解析式是()Ay3x+3By3x2Cy3x+2Dy3x15(2019广西百色)抛物线yx2+6x+7可由抛物线yx2如何平移得到的()A先向左平移3个单位,再向下平移2个单位B先向左平移6个单位,再向上平移7个单位C先向上平移2个单位,再向左平移3个单位D先回右平移3个单位,再向上平移2个单位6(2020济南模拟)如图,在平面直角坐标系中,ABC的顶点都在方格纸的格点上,如果将ABC先向右平移4个单位长度,在向下平移1个单位长度,得到A1B1C1,那么点A的对应点A1的坐标为() A(4,3)B(2,4)C(3,1)D(2,5)7.将抛物线y=x22x+3向上平移2个单位长度,再向右平移3个单位长度后,得到的抛物线的解析式为()Ay=(x1)2+4By=(x4)2+4Cy=(x+2)2+6Dy=(x4)2+68(2020咸宁模拟)如图,以点O为位似中心,将ABC放大得到DEF若AD=OA,则ABC与DEF的面积之比为()A1:2B1:4C1:5D1:69.如图,两个全等的直角三角形重叠在一起,将其中的一个三角形沿着点B到C的方向平移到DEF的位置,AB=10,DO=4,平移距离为6,则阴影部分面积为()A48B96C84D4210.某数学兴趣小组开展动手操作活动,设计了如图所示的三种图形,现计划用铁丝按照图形制作相应的造型,则所用铁丝的长度关系是()A甲种方案所用铁丝最长B乙种方案所用铁丝最长C丙种方案所用铁丝最长D三种方案所用铁丝一样长二、填空题11(2020武威)如图,在平面直角坐标系中,OAB的顶点A,B的坐标分别为(3,3),(4,0)把OAB沿x轴向右平移得到CDE,如果点D的坐标为(6,3),则点E的坐标为 12(2020枣庄模拟)如图,直线y=2x+4与x,y轴分别交于A,B两点,以OB为边在y轴右侧作等边三角形OBC,将点C向左平移,使其对应点C恰好落在直线AB上,则点C的坐标为 13(2020咸宁模拟)如图,在平面直角坐标系中,点A的坐标为(0,6),将OAB沿x轴向左平移得到OAB,点A的对应点A落在直线y=x上,则点B与其对应点B间的距离为 14(2020岳阳模拟)如图,已知抛物线y=ax2+bx+c与x轴交于A、B两点,顶点C的纵坐标为2,现将抛物线向右平移2个单位,得到抛物线y=a1x2+b1x+c1,则下列结论正确的是 (写出所有正确结论的序号)b0ab+c0阴影部分的面积为4若c=1,则b2=4a15.如图所示,一座楼房的楼梯,高1米,水平距离是2.8米,如果要在台阶上铺一种地毯,那么至少要买这种地毯_米 16.如图,是一块从一个边长为20cm的正方形BCDM材料中剪出的垫片,经测得FG9cm,则这个剪出的图形的周长是_cm 17如图,若DEF是由ABC经过平移后得到的,则平移的距离是_ 18(2019江苏徐州)已知二次函数的图象经过点P(2,2),顶点为O(0,0)将该图象向右平移,当它再次经过点P时,所得抛物线的函数表达式为 三、解答题19(2020安顺)如图,一次函数yx+1的图象与反比例函数y=kx的图象相交,其中一个交点的横坐标是2(1)求反比例函数的表达式;(2)将一次函数yx+1的图象向下平移2个单位,求平移后的图象与反比例函数y=kx图象的交点坐标;(3)直接写出一个一次函数,使其过点(0,5),且与反比例函数y=kx的图象没有公共点20(2020齐齐哈尔模拟)如图,在边上为1个单位长度的小正方形网格中:(1)画出ABC向上平移6个单位长度,再向右平移5个单位长度后的A1B1C1(2)以点B为位似中心,将ABC放大为原来的2倍,得到A2B2C2,请在网格中画出A2B2C2(3)求CC1C2的面积21.(2020浙江宁波模拟)已知抛物线,其中是常数(1)求证:不论为何值,该抛物线与轴一定有两个公共点;(2)若该抛物线的对称轴为直线,求该抛物线的函数解析式;把该抛物线沿轴向上平移多少个单位长度后,得到的抛物线与轴只有一个公共点?22.如图,在一块长为20m,宽为14m的草地上有一条宽为2m的曲折小路,你能运用你学的知识求出这块草地的绿地面积吗?23如图所示,将ABC平移,可以得到DEF,点B的对应点为点E,请画出点A的对应点D、点C的对应点F的位置,并作出DEF 24如图,将边长为4个单位的等边ABC沿边BC向右平移2个单位得到DEF,则四边形ABFD的周长?25如图,在平行四边形ABCD中,AE是BC边上的高,将ABE沿BC方向平移,使点E与点C重合,得GFC求证:BE=DG26.如图,平面直角坐标系内,小正方形网格的边长为1个单位长度,ABC的三个顶点的坐标分别为A(1,3),B(4,0),C(0,0)。画出将ABC向上平移1个单位长度,再向右平移5个单位长度后得到的A1B1C1。27.如图,在一块长为20m,宽为14m的草地上有一条宽为2m的曲折小路,你能运用你学的知识求出这块草地的绿地面积吗? 28(2019宁夏)将直角三角板ABC按如图1放置,直角顶点C与坐标原点重合,直角边AC、BC分别与x轴和y轴重合,其中ABC30将此三角板沿y轴向下平移,当点B平移到原点O时运动停止设平移的距离为m,平移过程中三角板落在第一象限部分的面积为s,s关于m的函数图象(如图2所示)与m轴相交于点P(,0),与s轴相交于点Q(1)试确定三角板ABC的面积;(2)求平移前AB边所在直线的解析式;(3)求s关于m的函数关系式,并写出Q点的坐标29(2019江苏淮安)如图,方格纸上每个小正方形的边长均为1个单位长度,点A、B都在格点上(两条网格线的交点叫格点)(1)将线段AB向上平移两个单位长度,点A的对应点为点A1,点B的对应点为点B1,请画出平移后的线段A1B1;(2)将线段A1B1绕点A1按逆时针方向旋转90,点B1的对应点为点B2,请画出旋转后的线段A1B2;(3)连接AB2、BB2,求ABB2的面积第 11 页 共 11 页