2008年全国中考数学压轴题精选精析(五)doc--初中数学 .doc
-
资源ID:41696883
资源大小:1.38MB
全文页数:17页
- 资源格式: DOC
下载积分:10金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2008年全国中考数学压轴题精选精析(五)doc--初中数学 .doc
永久免费在线组卷 课件教案下载 无需注册和点数2008年全国中考数学压轴题精选精析(五)50.(08云南双柏)25(本小题(1)(3)问共12分;第(4)、(5)问为附加题10分,每小题5分,附加题得分可以记入总分,若记入总分后超过120分,则按120分记)已知:抛物线yax2bxc与x轴交于A、B两点,与y轴交于点C,其中点B在x轴的正半轴上,点C在y轴的正半轴上,线段OB、OC的长(OB<OC)是方程x210x160的两个根,且抛物线的对称轴是直线x2(1)求A、B、C三点的坐标;(2)求此抛物线的表达式;(3)求ABC的面积;(4)若点E是线段AB上的一个动点(与点A、点B不重合),过点E作EFAC交BC于点F,连接CE,设AE的长为m,CEF的面积为S,求S与m之间的函数关系式,并写出自变量m的取值范围;(5)在(4)的基础上试说明S是否存在最大值,若存在,请求出S的最大值,并求出此时点E的坐标,判断此时BCE的形状;若不存在,请说明理由 (08云南双柏25题解析)25(本小题12分)解:(1)解方程x210x160得x12,x28点B在x轴的正半轴上,点C在y轴的正半轴上,且OBOC点B的坐标为(2,0),点C的坐标为(0,8)又抛物线yax2bxc的对称轴是直线x2由抛物线的对称性可得点A的坐标为(6,0)A、B、C三点的坐标分别是A(6,0)、B(2,0)、C(0,8)(2)点C(0,8)在抛物线yax2bxc的图象上c8,将A(6,0)、B(2,0)代入表达式yax2bx8,得解得所求抛物线的表达式为yx2x8(3)AB8,OC8SABC ×8×8=32(4)依题意,AEm,则BE8m,OA6,OC8, AC10EFAC BEFBAC即 EF过点F作FGAB,垂足为G,则sinFEGsinCAB FG·8mSSBCESBFE(8m)×8(8m)(8m)(8m)(88m)(8m)mm24m自变量m的取值范围是0m8(5)存在 理由: Sm24m(m4)28且0,当m4时,S有最大值,S最大值8m4,点E的坐标为(2,0)BCE为等腰三角形 51.(08重庆市卷)(本题答案暂缺)28、(10分)已知:如图,抛物线与y轴交于点C(0,4),与x轴交于点A、B,点A的坐标为(4,0)。(1)求该抛物线的解析式;(2)点Q是线段AB上的动点,过点Q作QEAC,交BC于点E,连接CQ。当CQE的面积最大时,求点Q的坐标;28题图(3)若平行于x轴的动直线与该抛物线交于点P,与直线AC交于点F,点D的坐标为(2,0)。问:是否存在这样的直线,使得ODF是等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由。52(08浙江湖州)24(本小题12分)已知:在矩形中,分别以所在直线为轴和轴,建立如图所示的平面直角坐标系是边上的一个动点(不与重合),过点的反比例函数的图象与边交于点(1)求证:与的面积相等;(2)记,求当为何值时,有最大值,最大值为多少?(3)请探索:是否存在这样的点,使得将沿对折后,点恰好落在上?若存在,求出点的坐标;若不存在,请说明理由(08浙江湖州24题解析)24(本小题12分)(1)证明:设,与的面积分别为,由题意得,即与的面积相等(2)由题意知:两点坐标分别为,当时,有最大值(3)解:设存在这样的点,将沿对折后,点恰好落在边上的点,过点作,垂足为由题意得:,又,解得存在符合条件的点,它的坐标为53.(08浙江淮安)(本题答案暂缺)28(本小题14分) 如图所示,在平面直角坐标系中二次函数y=a(x-2)2-1图象的顶点为P,与x轴交点为 A、B,与y轴交点为C连结BP并延长交y轴于点D. (1)写出点P的坐标; (2)连结AP,如果APB为等腰直角三角形,求a的值及点C、D的坐标; (3)在(2)的条件下,连结BC、AC、AD,点E(0,b)在线段CD(端点C、D除外)上,将BCD绕点E逆时针方向旋转90°,得到一个新三角形设该三角形与ACD重叠部分的面积为S,根据不同情况,分别用含b的代数式表示S选择其中一种情况给出解答过程,其它情况直接写出结果;判断当b为何值时,重叠部分的面积最大?写出最大值54.(08浙江嘉兴)24如图,直角坐标系中,已知两点,点在第一象限且为正三角形,的外接圆交轴的正半轴于点,过点的圆的切线交轴于点(1)求两点的坐标;(2)求直线的函数解析式;(3)设分别是线段上的两个动点,且平分四边形的周长试探究:的最大面积?(第24题)(第24题)(08浙江嘉兴24题解析)24(1),作于,为正三角形,连,(第24题)(2),是圆的直径,又是圆的切线,设直线的函数解析式为,则,解得直线的函数解析式为(3),四边形的周长设,的面积为,则,当时,点分别在线段上,解得满足,的最大面积为55(08浙江金华)(本题答案暂缺)24. (本题12分) 如图1,在平面直角坐标系中,己知AOB是等边三角形,点A的坐标是(0,4),点B在第一象限,点P是x轴上的一个动点,连结AP,并把AOP绕着点A按逆时针方向旋转.使边AO与AB重合.得到ABD。(1)求直线AB的解析式;(2)当点P运动到点(,0)时,求此时DP的长及点D的坐标;(3)是否存在点P,使OPD的面积等于,若存在,请求出符合条件的点P的坐标;若不存在,请说明理由。56(08浙江丽水)24如图,在平面直角坐标系中,已知点坐标为(2,4),直线与轴相交于点,连结,抛物线从点沿方向平移,与直线交于点,顶点到点时停止移动BOAPM(第24题)(1)求线段所在直线的函数解析式;(2)设抛物线顶点的横坐标为,用的代数式表示点的坐标;当为何值时,线段最短;(3)当线段最短时,相应的抛物线上是否存在点,使 的面积与的面积相等,若存在,请求出点的坐标;若不存在,请说明理由(08浙江丽水24题解析)24(本题14分)解:(1)设所在直线的函数解析式为,(2,4),, ,所在直线的函数解析式为.(3分)(2)顶点M的横坐标为,且在线段上移动, (02).顶点的坐标为(,).抛物线函数解析式为.当时,(02).点的坐标是(2,).(3分) =, 又02,当时,PB最短. (3分)(3)当线段最短时,此时抛物线的解析式为.(1分)假设在抛物线上存在点,使. 设点的坐标为(,).当点落在直线的下方时,过作直线/,交轴于点,点的坐标是(0,).DOABPMCE点的坐标是(2,3),直线的函数解析式为.,点落在直线上.=.解得,即点(2,3).点与点重合.此时抛物线上不存在点,使与的面积相等.(2分)当点落在直线的上方时,作点关于点的对称称点,过作直线/,交轴于点,、的坐标分别是(0,1),(2,5),直线函数解析式为.,点落在直线上.=.解得:,.代入,得,.此时抛物线上存在点,使与的面积相等. (2分)综上所述,抛物线上存在点, 使与的面积相等. 57(08浙江衢州)24、(本题14分)已知直角梯形纸片OABC在平面直角坐标系中的位置如图所示,四个顶点的坐标分别为O(0,0),A(10,0),B(8,),C(0,),点T在线段OA上(不与线段端点重合),将纸片折叠,使点A落在射线AB上(记为点A),折痕经过点T,折痕TP与射线AB交于点P,设点T的横坐标为t,折叠后纸片重叠部分(图中的阴影部分)的面积为S;(1)求OAB的度数,并求当点A在线段AB上时,S关于t的函数关系式;(2)当纸片重叠部分的图形是四边形时,求t的取值范围;(3)S存在最大值吗?若存在,求出这个最大值,并求此时t的值;若不存在,请说明理由。yBCyTACBOxOTAx(08浙江衢州24题解析)24、(本题14分)解:(1) A,B两点的坐标分别是A(10,0)和B(8,), , 当点A´在线段AB上时,TA=TA´, A´TA是等边三角形,且, ,EA´y ,xOCPBA 当A´与B重合时,AT=AB=,T 所以此时。 (2)当点A´在线段AB的延长线,且点P在线段AB(不与B重合)上时, 纸片重叠部分的图形是四边形(如图(1),其中E是TA´与CB的交点),A´yx 当点P与B重合时,AT=2AB=8,点T的坐标是(2,0) 又由(1)中求得当A´与B重合时,T的坐标是(6,0)PBE 所以当纸片重叠部分的图形是四边形时,。FC (3)S存在最大值ATO 当时, 在对称轴t=10的左边,S的值随着t的增大而减小,当t=6时,S的值最大是。当时,由图,重叠部分的面积A´EB的高是, 当t=2时,S的值最大是;当,即当点A´和点P都在线段AB的延长线是(如图,其中E是TA´与CB的交点,F是TP与CB的交点),四边形ETAB是等腰形,EF=ET=AB=4,综上所述,S的最大值是,此时t的值是。58(08浙江绍兴)24将一矩形纸片放在平面直角坐标系中,动点从点出发以每秒1个单位长的速度沿向终点运动,运动秒时,动点从点出发以相等的速度沿向终点运动当其中一点到达终点时,另一点也停止运动设点的运动时间为(秒)(1)用含的代数式表示;(2)当时,如图1,将沿翻折,点恰好落在边上的点处,求点的坐标;(3)连结,将沿翻折,得到,如图2问:与能否平行?与能否垂直?若能,求出相应的值;若不能,说明理由图1OPAxBDCQy(第24题图)图2OPAxBCQyE(08浙江绍兴24题解析)24(本题满分14分)解:(1),图1OPAxBDCQy图2OPAxBCQy图3OFAxBCyEQP(2)当时,过点作,交于,如图1,则,(3)能与平行若,如图2,则,即,而,不能与垂直若,延长交于,如图3,则又,而,不存在59.(08浙江宿迁)27(本题满分12分)如图,的半径为,正方形顶点坐标为,顶点在上运动(1)当点运动到与点、在同一条直线上时,试证明直线与相切;(2)当直线与相切时,求所在直线对应的函数关系式;第27题(3)设点的横坐标为,正方形的面积为,求与之间的函数关系式,并求出的最大值与最小值(08浙江宿迁24题解析)24如图,在矩形中,点是边上的动点(点不与点,点重合),过点作直线,交边于点,再把沿着动直线对折,点的对应点是点,设的长度为,与矩形重叠部分的面积为(1)求的度数;(2)当取何值时,点落在矩形的边上?(3)求与之间的函数关系式;当取何值时,重叠部分的面积等于矩形面积的?DQCBPRA(第24题)BADC(备用图1)BADC(备用图2)60(08浙江温州)24(本题14分)如图,在中,分别是边的中点,点从点出发沿方向运动,过点作于,过点作交于,当点与点重合时,点停止运动设,(1)求点到的距离的长;(2)求关于的函数关系式(不要求写出自变量的取值范围);ABCDERPHQ(第24题图)(3)是否存在点,使为等腰三角形?若存在,请求出所有满足要求的的值;若不存在,请说明理由(08浙江温州24题解析)24 (本题14分)解:(1),点为中点,(2),即关于的函数关系式为:(3)存在,分三种情况:ABCDERPHQM21当时,过点作于,则,ABCDERPHQ,ABCDERPHQ当时,当时,则为中垂线上的点,于是点为的中点,综上所述,当为或6或时,为等腰三角形61.(08浙江义乌)(本题答案暂缺)24.如图1所示,直角梯形OABC的顶点A、C分别在y轴正半轴与轴负半轴上.过点B、C作直线将直线平移,平移后的直线与轴交于点D,与轴交于点E(1)将直线向右平移,设平移距离CD为(t0),直角梯形OABC被直线扫过的面积(图中阴影部份)为,关于的函数图象如图2所示, OM为线段,MN为抛物线的一部分,NQ为射线,N点横坐标为4求梯形上底AB的长及直角梯形OABC的面积;当时,求S关于的函数解析式;(2)在第(1)题的条件下,当直线向左或向右平移时(包括与直线BC重合),在直线AB上是否存在点P,使为等腰直角三角形?若存在,请直接写出所有满足条件的点P的坐标;若不存在,请说明理由 永久免费在线组卷 课件教案下载 无需注册和点数