2010年高考数学压轴题系列训练四 doc--高中数学 .doc
-
资源ID:41758920
资源大小:521.50KB
全文页数:9页
- 资源格式: DOC
下载积分:10金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2010年高考数学压轴题系列训练四 doc--高中数学 .doc
永久免费组卷搜题网2010年高考数学压轴题系列训练四1(本小题满分14分) 已知f(x)=(xR)在区间1,1上是增函数.()求实数a的值组成的集合A;()设关于x的方程f(x)=的两个非零实根为x1、x2.试问:是否存在实数m,使得不等式m2+tm+1|x1x2|对任意aA及t1,1恒成立?若存在,求m的取值范围;若不存在,请说明理由.来源:学*科*网Z*X*X*K2(本小题满分12分)如图,P是抛物线C:y=x2上一点,直线l过点P且与抛物线C交于另一点Q.来源:Zxxk.Com()若直线l与过点P的切线垂直,求线段PQ中点M的轨迹方程;()若直线l不过原点且与x轴交于点S,与y轴交于点T,试求的取值范围.3(本小题满分12分)某突发事件,在不采取任何预防措施的情况下发生的概率为0.3,一旦发生,将造成400万元的损失. 现有甲、乙两种相互独立的预防措施可供采用. 单独采用甲、乙预防措施所需的费用分别为45万元和30万元,采用相应预防措施后此突发事件不发生的概率为0.9和0.85. 若预防方案允许甲、乙两种预防措施单独采用、联合采用或不采用,请确定预防方案使总费用最少.(总费用=采取预防措施的费用+发生突发事件损失的期望值.)4(本小题满分14分,第一小问满分4分,第二小问满分10分)已知,函数.()当时,求使成立的的集合;()求函数在区间上的最小值.2010年高考数学压轴题系列训练含答案及解析详解四1(本小题满分14分) 已知f(x)=(xR)在区间1,1上是增函数.()求实数a的值组成的集合A;来源:学科网ZXXK()设关于x的方程f(x)=的两个非零实根为x1、x2.试问:是否存在实数m,使得不等式m2+tm+1|x1x2|对任意aA及t1,1恒成立?若存在,求m的取值范围;若不存在,请说明理由.解:()f(x)= ,f(x)在1,1上是增函数, f(x)0对x1,1恒成立,即x2ax20对x1,1恒成立. 设(x)=x2ax2,方法一: (1)=1a20, 1a1, (1)=1+a20.对x1,1,f(x)是连续函数,且只有当a=1时,f(-1)=0以及当a=1时,f(1)=0A=a|1a1. 方法二: 0, <0, 或 (1)=1+a20 (1)=1a20 0a1 或 1a0 1a1.对x1,1,f(x)是连续函数,且只有当a=1时,f(1)=0以及当a=-1时,f(1)=0A=a|1a1.()由=,得x2ax2=0, =a2+8>0x1,x2是方程x2ax2=0的两非零实根, x1+x2=a, 从而|x1x2|=.x1x2=2,来源:Zxxk.Com1a1,|x1-x2|=3.要使不等式m2+tm+1|x1x2|对任意aA及t1,1恒成立,当且仅当m2+tm+13对任意t1,1恒成立,即m2+tm20对任意t1,1恒成立. 设g(t)=m2+tm2=mt+(m22),方法一:来源:学&科&网 g(1)=m2m20, g(1)=m2+m20,m2或m2.所以,存在实数m,使不等式m2+tm+1|x1x2|对任意aA及t1,1恒成立,其取值范围是m|m2,或m2.方法二:当m=0时,显然不成立;当m0时, m>0, m<0, 或 g(1)=m2m20 g(1)=m2+m20 m2或m2.所以,存在实数m,使不等式m2+tm+1|x1x2|对任意aA及t-1,1恒成立,其取值范围是m|m2,或m2.来源:学科网ZXXK2(本小题满分12分)如图,P是抛物线C:y=x2上一点,直线l过点P且与抛物线C交于另一点Q.()若直线l与过点P的切线垂直,求线段PQ中点M的轨迹方程;()若直线l不过原点且与x轴交于点S,与y轴交于点T,试求的取值范围.解:()设P(x1,y1),Q(x2,y2),M(x0,y0),依题意x10,y1>0,y2>0.由y=x2, 得y=x.过点P的切线的斜率k切= x1,直线l的斜率kl=-,来源:学.科.网Z.X.X.K直线l的方程为yx12= (xx1),方法一:联立消去y,得x2+xx122=0.M是PQ的中点 x0=-, y0=x12(x0x1).消去x1,得y0=x02+1(x00),PQ中点M的轨迹方程为y=x2+1(x0).方法二:由y1=x12,y2=x22,x0=,得y1y2=x12x22=(x1+x2)(x1x2)=x0(x1x2),则x0=kl=-,x1=,将上式代入并整理,得y0=x02+1(x00),PQ中点M的轨迹方程为y=x2+1(x0).()设直线l:y=kx+b,依题意k0,b0,则T(0,b).分别过P、Q作PPx轴,QQy轴,垂足分别为P、Q,则. y=x2由 消去x,得y22(k2+b)y+b2=0. y=kx+b y1+y2=2(k2+b),则 y1y2=b2.方法一:|b|()2|b|=2|b|=2.y1、y2可取一切不相等的正数,的取值范围是(2,+).方法二:=|b|=|b|.当b>0时,=b=+2>2;当b<0时,=b=.来源:Zxxk.Com又由方程有两个相异实根,得=4(k2+b)2-4b2=4k2(k2+2b)>0,于是k2+2b>0,即k2>2b.所以>=2.当b>0时,可取一切正数,的取值范围是(2,+).方法三:由P、Q、T三点共线得kTQ=KTP,即=.则x1y2bx1=x2y1bx2,即b(x2x1)=(x2y1x1y2).于是b=x1x2.22=+=+2.可取一切不等于1的正数,的取值范围是(2,+).3(本小题满分12分)某突发事件,在不采取任何预防措施的情况下发生的概率为0.3,一旦发生,将造成400万元的损失. 现有甲、乙两种相互独立的预防措施可供采用. 单独采用甲、乙预防措施所需的费用分别为45万元和30万元,采用相应预防措施后此突发事件不发生的概率为0.9和0.85. 若预防方案允许甲、乙两种预防措施单独采用、联合采用或不采用,请确定预防方案使总费用最少.(总费用=采取预防措施的费用+发生突发事件损失的期望值.)解:不采取预防措施时,总费用即损失期望为400×0.3=120(万元);若单独采取措施甲,则预防措施费用为45万元,发生突发事件的概率为10.9=0.1,损失期望值为400×0.1=40(万元),所以总费用为45+40=85(万元)若单独采取预防措施乙,则预防措施费用为30万元,发生突发事件的概率为10.85=0.15,损失期望值为400×0.15=60(万元),所以总费用为30+60=90(万元);若联合采取甲、乙两种预防措施,则预防措施费用为45+30=75(万元),发生突发事件的概率为(10.9)(10.85)=0.015,损失期望值为400×0.015=6(万元),所以总费用为75+6=81(万元).综合、,比较其总费用可知,应选择联合采取甲、乙两种预防措施,可使总费用最少.4(本小题满分14分,第一小问满分4分,第二小问满分10分)已知,函数.()当时,求使成立的的集合;()求函数在区间上的最小值.解:()由题意,.来源:学科网当时,解得或;当时,解得.综上,所求解集为.()设此最小值为.当时,在区间上,.因为 ,则在区间上是增函数,所以.当时,在区间上,由知 .当时,在区间上,. .来源:学科网若,在区间内,从而为区间上的增函数,由此得 .来源:学*科*网Z*X*X*K若,则. 当时,从而为区间上的增函数; 当时,从而为区间上的减函数.因此,当时,或.当时,故;当时,故.综上所述,所求函数的最小值 来源:Z*xx*k.Com 永久免费组卷搜题网