欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    2009-2010学年高三数学140分突破一轮复习必备精品2doc--高中数学 .doc

    • 资源ID:41765446       资源大小:3.90MB        全文页数:78页
    • 资源格式: DOC        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2009-2010学年高三数学140分突破一轮复习必备精品2doc--高中数学 .doc

    永久免费组卷搜题网第二章函数概念与基本初等函数考纲导读(一)函数1了解构成函数的要素,了解映射的概念,会求一些简单函数的定义域和值域2理解函数的三种表示法:解析法、图象法和列表法,能根据不同的要求选择恰当的方法表示简单的函数。3了解分段函数,能用分段函数来解决一些简单的数学问题。4理解函数的单调性,会讨论和证明一些简单的函数的单调性;理解函数奇偶性的含义,会判断简单的函数奇偶性。5理解函数的最大(小)值及其几何意义,并能求出一些简单的函数的最大(小)值6会运用函数图像理解和研究函数的性质(二)指数函数1了解指数函数模型的实际背景。2理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算。3理解指数函数的概念,会求与指数函数性质有关的问题。4知道指数函数是一类重要的函数模型。(三)对数函数1理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用。2理解对数函数的概念;会求与对数函数性质有关的问题3知道对数函数是一类重要的函数模型4了解指数函数 与对数函数 互为反函数( )。(四)幂函数1了解幂函数的概念。2结合函数 的图像,了解它们的变化情况。(五)函数与方程1了解函数零点的概念,结合二次函数的图像,了解函数的零点与方程根的联系。2理解并掌握连续函数在某个区间上存在零点的判定方法。能利用函数的图象和性质判别函数零点的个数(六)函数模型及其应用1了解指数函数、对数函数以及幂函数的增长特征。知道直线上升、指数增长、对数增长等不同函数类型增长的含义。2了解函数模型(如指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用。3能利用给定的函数模型解决简单的实际问题。知识网络高考导航根据考试大纲的要求,结合2009年高考的命题情况,我们可以预测2010年集合部分在选择、填空和解答题中都有涉及,高考命题热点有以下两个方面:一是集合的运算、集合的有关述语和符号、集合的简单应用等作基础性的考查,题型多以选择、填空题的形式出现;二是以函数、方程、三角、不等式等知识为载体,以集合的语言和符号为表现形式,结合简易逻辑知识考查学生的数学思想、数学方法和数学能力,题型常以解答题的形式出现函数是高考数学的重点内容之一,函数的观点和思想方法贯穿整个高中数学的全过程,包括解决几何问题.在近几年的高考试卷中,选择题、填空题、解答题三种题型中每年都有函数试题,而且常考常新.以基本函数为模型的应用题和综合题是高考命题的新趋势.考试热点:考查函数的表示法、定义域、值域、单调性、奇偶性、反函数和函数的图象.函数与方程、不等式、数列是相互关联的概念,通过对实际问题的抽象分析,建立相应的函数模型并用来解决问题,是考试的热点.考查运用函数的思想来观察问题、分析问题和解决问题,渗透数形结合和分类讨论的基本数学思想.第1课时 函数及其表示基础过关一、映射1映射:设A、B是两个集合,如果按照某种对应关系f,对于集合A中的 元素,在集合B中都有 元素和它对应,这样的对应叫做 到 的映射,记作 .2象与原象:如果f:AB是一个A到B的映射,那么和A中的元素a对应的 叫做象, 叫做原象。二、函数1定义:设A、B是 ,f:AB是从A到B的一个映射,则映射f:AB叫做A到B的 ,记作 .2函数的三要素为 、 、 ,两个函数当且仅当 分别相同时,二者才能称为同一函数。3函数的表示法有 、 、 。典型例题例1.下列各组函数中,表示同一函数的是( ).A. B. C. D. 解:C变式训练1:下列函数中,与函数y=x相同的函数是 ( )A.y= B.y=()2 C.y=lg10x D.y=解:C例2.给出下列两个条件:(1)f(+1)=x+2;(2)f(x)为二次函数且f(0)=3,f(x+2)-f(x)=4x+2.试分别求出f(x)的解析式.解:(1)令t=+1,t1,x=(t-1)2.则f(t)=(t-1)2+2(t-1)=t2-1,即f(x)=x2-1,x1,+).(2)设f(x)=ax2+bx+c (a0),f(x+2)=a(x+2)2+b(x+2)+c,则f(x+2)-f(x)=4ax+4a+2b=4x+2.,又f(0)=3c=3,f(x)=x2-x+3.变式训练2:(1)已知f()=lgx,求f(x);(2)已知f(x)是一次函数,且满足3f(x+1)-2f(x-1)=2x+17,求f(x);(3)已知f(x)满足2f(x)+f()=3x,求f(x).解:(1)令+1=t,则x=,f(t)=lg,f(x)=lg,x(1,+).(2)设f(x)=ax+b,则3f(x+1)-2f(x-1)=3ax+3a+3b-2ax+2a-2b=ax+b+5a=2x+17,a=2,b=7,故f(x)=2x+7.(3)2f(x)+f()=3x, 把中的x换成,得2f()+f(x)= ×2-得3f(x)=6x-,f(x)=2x-.例3. 等腰梯形ABCD的两底分别为AD=2a,BC=a,BAD=45°,作直线MNAD交AD于M,交折线ABCD于N,记AM=x,试将梯形ABCD位于直线MN左侧的面积y表示为x的函数,并写出函数的定义域.解:作BHAD,H为垂足,CGAD,G为垂足,依题意,则有AH=,AG=a.(1)当M位于点H的左侧时,NAB,由于AM=x,BAD=45°.MN=x.y=SAMN=x2(0x).(2)当M位于HG之间时,由于AM=x,MN=,BN=x-.y=S AMNB =x+(x-)=ax-(3)当M位于点G的右侧时,由于AM=x,MN=MD=2a-x.y=S ABCD-SMDN=综上:y=变式训练3:已知函数f(x)=(1)画出函数的图象;(2)求f(1),f(-1),f的值.解:(1)分别作出f(x)在x0,x=0,x0段上的图象,如图所示,作法略.小结归纳(2)f(1)=12=1,f(-1)=-f=f(1)=1.1了解映射的概念,应紧扣定义,抓住任意性和唯一性2函数的解析式常用求法有:待定系数法、换元法(或凑配法)、解方程组法使用换元法时,要注意研究定义域的变化3在简单实际问题中建立函数式,首先要选定变量,然后寻找等量关系,求得函数的解析式,还要注意定义域若函数在定义域的不同子集上的对应法则不同,可用分段函数来表示第2课时 函数的定义域和值域基础过关一、定义域:1函数的定义域就是使函数式 的集合.2常见的三种题型确定定义域: 已知函数的解析式,就是 . 复合函数f g(x)的有关定义域,就要保证内函数g(x)的 域是外函数f (x)的 域.实际应用问题的定义域,就是要使得 有意义的自变量的取值集合.二、值域:1函数yf (x)中,与自变量x的值 的集合.2常见函数的值域求法,就是优先考虑 ,取决于 ,常用的方法有:观察法;配方法;反函数法;不等式法;单调性法;数形法;判别式法;有界性法;换元法(又分为 法和 法)例如: 形如y,可采用 法; y,可采用 法或 法; yaf (x)2bf (x)c,可采用 法; yx,可采用 法; yx,可采用 法; y可采用 法等.典型例题例1. 求下列函数的定义域:(1)y=; (2)y=; (3)y=.解:(1)由题意得化简得即故函数的定义域为x|x0且x-1.(2)由题意可得解得故函数的定义域为x|-x且x±.(3)要使函数有意义,必须有即x1,故函数的定义域为1,+).变式训练1:求下列函数的定义域:(1)y=+(x-1)0 ; (2)y=+(5x-4)0; (3)y=+lgcosx;解:(1)由得所以-3x2且x1.故所求函数的定义域为(-3,1)(1,2).(2)由得函数的定义域为(3)由,得借助于数轴,解这个不等式组,得函数的定义域为例2. 设函数y=f(x)的定义域为0,1,求下列函数的定义域.(1)y=f(3x); (2)y=f();(3)y=f(; (4)y=f(x+a)+f(x-a).解:(1)03x1,故0x,y=f(3x)的定义域为0, .(2)仿(1)解得定义域为1,+).(3)由条件,y的定义域是f与定义域的交集.列出不等式组故y=f的定义域为.()由条件得讨论:当即0a时,定义域为a,1-a;当即-a0时,定义域为-a,1+a.综上所述:当0a时,定义域为a,1-a;当-a0时,定义域为-a,1+a.变式训练2:若函数f(x)的定义域是0,1,则f(x+a)·f(x-a)(0a)的定义域是 ( ) A. B.a,1-a C.-a,1+a D.0,1解:B 例3. 求下列函数的值域:(1)y= (2)y=x-; (3)y=.解:(1)方法一 (配方法)y=1-而0值域为.方法二 (判别式法)由y=得(y-1)y=1时,1.又R,必须=(1-y)2-4y(y-1)0.函数的值域为.(2)方法一 (单调性法)定义域,函数y=x,y=-均在上递增,故y函数的值域为.方法二 (换元法)令=t,则t0,且x=y=-(t+1)2+1(t0),y(-,.(3)由y=得,ex=ex0,即0,解得-1y1.函数的值域为y|-1y1.变式训练3:求下列函数的值域:(1)y=; (2)y=|x|.解:(1)(分离常数法)y=-,0,y-.故函数的值域是y|yR,且y-.(2)方法一 (换元法)1-x20,令x=sin,则有y=|sincos|=|sin2|,故函数值域为0,.方法二 y=|x|·0y即函数的值域为.例4若函数f(x)=x2-x+a的定义域和值域均为1,b(b1),求a、b的值.解:f(x)=(x-1)2+a-. 其对称轴为x=1,即1,b为f(x)的单调递增区间.f(x)min=f(1)=a-=1 f(x)max=f(b)=b2-b+a=b 由解得 变式训练4:已知函数f(x)=x2-4ax+2a+6 (xR).(1)求函数的值域为0,+)时的a的值;(2)若函数的值均为非负值,求函数f(a)=2-a|a+3|的值域.解: (1)函数的值域为0,+),=16a2-4(2a+6)=02a2-a-3=0a=-1或a=.(2)对一切xR,函数值均非负,=8(2a2-a-3)0-1a,a+30,f(a)=2-a(a+3)=-a2-3a+2=-(a+)2+(a).二次函数f(a)在上单调递减,f(a)min=f=-,f(a)max=f(-1)=4,f(a)的值域为.小结归纳1求函数的定义域一般有三类问题:一是给出解释式(如例1),应抓住使整个解式有意义的自变量的集合;二是未给出解析式(如例2),就应抓住内函数的值域就是外函数的定义域;三是实际问题,此时函数的定义域除使解析式有意义外,还应使实际问题或几何问题有意义.2求函数的值域没有通用方法和固定模式,除了掌握常用方法(如直接法、单调性法、有界性法、配方法、换元法、判别式法、不等式法、图象法)外,应根据问题的不同特点,综合而灵活地选择方法.第3课时 函数的单调性基础过关一、单调性1定义:如果函数yf (x)对于属于定义域I内某个区间上的任意两个自变量的值x1、x2,当x1、<x2时,都有 ,则称f (x)在这个区间上是增函数,而这个区间称函数的一个 ;都有 ,则称f (x)在这个区间上是减函数,而这个区间称函数的一个 .若函数f(x)在整个定义域l内只有唯一的一个单调区间,则f(x)称为 .2判断单调性的方法:(1) 定义法,其步骤为: ; ; .(2) 导数法,若函数yf (x)在定义域内的某个区间上可导,若 ,则f (x)在这个区间上是增函数;若 ,则f (x)在这个区间上是减函数.二、单调性的有关结论1若f (x), g(x)均为增(减)函数,则f (x)g(x) 函数;2若f (x)为增(减)函数,则f (x)为 ;3互为反函数的两个函数有 的单调性;4复合函数yf g(x)是定义在M上的函数,若f (x)与g(x)的单调相同,则f g(x)为 ,若f (x), g(x)的单调性相反,则f g(x)为 .5奇函数在其对称区间上的单调性 ,偶函数在其对称区间上的单调性 .典型例题例1. 已知函数f(x)=ax+ (a1),证明:函数f(x)在(-1,+)上为增函数.证明 方法一 任取x1,x2(-1,+),不妨设x1x2,则x2-x10, 1且0,,又x1+10,x2+10,0,于是f(x2)-f(x1)=+0,故函数f(x)在(-1,+)上为增函数.方法二 f(x)=ax+1-(a1),求导数得=axlna+,a1,当x-1时,axlna0,0,0在(-1,+)上恒成立,则f(x)在(-1,+)上为增函数.方法三 a1,y=ax为增函数,又y=,在(-1,+)上也是增函数.y=ax+在(-1,+)上为增函数.变式训练1:讨论函数f(x)=x+(a0)的单调性.解:方法一 显然f(x)为奇函数,所以先讨论函数f(x)在(0,+)上的单调性,设x1x20,则f(x1)-f(x2) =(x1+)-(x2+)=(x1-x2)·(1-).当0x2x1时,1,则f(x1)-f(x2)0,即f(x1)f(x2),故f(x)在(0,上是减函数.当x1x2时,01,则f(x1)-f(x2)0,即f(x1)f(x2),故f(x)在,+)上是增函数.f(x)是奇函数,f(x)分别在(-,-、,+)上为增函数;f(x)分别在-,0)、(0,上为减函数.方法二 由=1-=0可得x=±当x或x-时,0f(x)分别在(,+)、(-,-上是增函数.同理0x或-x0时,0即f(x)分别在(0,、-,0)上是减函数.例2. 判断函数f(x)=在定义域上的单调性.解: 函数的定义域为x|x-1或x1,则f(x)= ,可分解成两个简单函数.f(x)= =x2-1的形式.当x1时,u(x)为增函数,为增函数.f(x)=在1,+)上为增函数.当x-1时,u(x)为减函数,为减函数,f(x)=在(-,-1上为减函数.变式训练2:求函数y=(4x-x2)的单调区间.解: 由4x-x20,得函数的定义域是(0,4).令t=4x-x2,则y=t.t=4x-x2=-(x-2)2+4,t=4x-x2的单调减区间是2,4),增区间是(0,2.又y=t在(0,+)上是减函数,函数y=(4x-x2)的单调减区间是(0,2,单调增区间是2,4).例3. 求下列函数的最值与值域:(1)y=4-; (2)y=x+;(3)y=.解:(1)由3+2x-x20得函数定义域为-1,3,又t=3+2x-x2=4-(x-1)2.t0,4,0,2,从而,当x=1时,ymin=2,当x=-1或x=3时,ymax=4.故值域为2,4. (2)方法一 函数y=x+是定义域为x|x0上的奇函数,故其图象关于原点对称,故只讨论x0时,即可知x0时的最值.当x0时,y=x+2=4,等号当且仅当x=2时取得.当x0时,y-4,等号当且仅当x=-2时取得.综上函数的值域为(-,-44,+),无最值.方法二 任取x1,x2,且x1x2,因为f(x1)-f(x2)=x1+-(x2+)=所以当x-2或x2时,f(x)递增,当-2x0或0x2时,f(x)递减.故x=-2时,f(x)最大值=f(-2)=-4,x=2时,f(x)最小值=f(2)=4,所以所求函数的值域为(-,-44,+),无最大(小)值.(3)将函数式变形为y=,可视为动点M(x,0)与定点A(0,1)、B(2,-2)距离之和,连结AB,则直线AB与x轴的交点(横坐标)即为所求的最小值点.ymin=|AB|=,可求得x=时,ymin=.显然无最大值.故值域为,+).变式训练3:在经济学中,函数f(x)的边际函数Mf(x)定义为Mf(x)=f(x+1)-f(x).某公司每月最多生产100台报警系统装置,生产x(x0)台的收入函数为R(x)=3 000x-20x2 (单位:元),其成本函数为C(x)=500x+4 000(单位:元),利润是收入与成本之差.(1)求利润函数P(x)及边际利润函数MP(x);(2)利润函数P(x)与边际利润函数MP(x)是否具有相同的最大值?解:(1)P(x)=R(x)-C(x)=(3 000x-20x2)-(500x+4 000)=-20x2+2 500x-4 000(x1,100且xN,)MP(x)=P(x+1)-P(x)=-20(x+1)2+2 500(x+1)-4 000-(-20x2+2 500x-4 000)=2 480-40x (x1,100且xN).(2)P(x)=-20(x-2+74 125,当x=62或63时,P(x)max=74 120(元).因为MP(x)=2 480-40x是减函数,所以当x=1时,MP(x)max=2 440(元).因此,利润函数P(x)与边际利润函数MP(x)不具有相同的最大值.例4(2009·广西河池模拟)已知定义在区间(0,+)上的函数f(x)满足f(=f(x1)-f(x2),且当x1时,f(x)0.(1)求f(1)的值;(2)判断f(x)的单调性;(3)若f(3)=-1,解不等式f(|x|)-2.解:(1)令x1=x20,代入得f(1)=f(x1)-f(x1)=0,故f(1)=0.(2)任取x1,x2(0,+),且x1x2,则1,由于当x1时,f(x)0,所以f0,即f(x1)-f(x2)0,因此f(x1)f(x2),所以函数f(x)在区间(0,+)上是单调递减函数.(3)由f()=f(x1)-f(x2)得f(=f(9)-f(3),而f(3)=-1,所以f(9)=-2.由于函数f(x)在区间(0,+)上是单调递减函数,由f(|x|)f(9),得|x|9,x9或x-9.因此不等式的解集为x|x9或x-9.变式训练4:函数f(x)对任意的a、bR,都有f(a+b)=f(a)+f(b)-1,并且当x0时,f(x)1.(1)求证:f(x)是R上的增函数;(2)若f(4)=5,解不等式f(3m2-m-2)3.解:(1)设x1,x2R,且x1x2,则x2-x10,f(x2-x1)1. f(x2)-f(x1)=f(x2-x1)+x1)-f(x1)=f(x2-x1)+f(x1)-1-f(x1)=f(x2-x1)-10. f(x2)f(x1).即f(x)是R上的增函数. (2)f(4)=f(2+2)=f(2)+f(2)-1=5,f(2)=3, 原不等式可化为f(3m2-m-2)f(2),f(x)是R上的增函数,3m2-m-22, 小结归纳解得-1m,故解集为(-1,). 1证明一个函数在区间D上是增(减)函数的方法有:(1) 定义法.其过程是:作差变形判断符号,而最常用的变形是将和、差形式的结构变为积的形式的结构;(2) 求导法.其过程是:求导判断导函数的符号下结论.2确定函数单调区间的常用方法有:(1)观察法;(2)图象法(即通过画出函数图象,观察图象,确定单调区间);(3)定义法;(4)求导法.注意:单调区间一定要在定义域内.3含有参量的函数的单调性问题,可分为两类:一类是由参数的范围判定其单调性;一类是给定单调性求参数范围,其解法是由定义或导数法得到恒成立的不等式,结合定义域求出参数的取值范围.第4课时 函数的奇偶性基础过关1奇偶性: 定义:如果对于函数f (x)定义域内的任意x都有 ,则称f (x)为奇函数;若 ,则称f (x)为偶函数. 如果函数f (x)不具有上述性质,则f (x)不具有 . 如果函数同时具有上述两条性质,则f (x) . 简单性质:1) 图象的对称性质:一个函数是奇函数的充要条件是它的图象关于 对称;一个函数是偶函数的充要条件是它的图象关于 对称.2) 函数f(x)具有奇偶性的必要条件是其定义域关于 对称.2与函数周期有关的结论:已知条件中如果出现、或(、均为非零常数,),都可以得出的周期为 ;的图象关于点中心对称或的图象关于直线轴对称,均可以得到周期 典型例题例1. 判断下列函数的奇偶性.(1)f(x)=;(2)f(x)=log2(x+) (xR);(3)f(x)=lg|x-2|.解:(1)x2-10且1-x20,x=±1,即f(x)的定义域是-1,1.f(1)=0,f(-1)=0,f(1)=f(-1),f(-1)=-f(1),故f(x)既是奇函数又是偶函数.(2)方法一 易知f(x)的定义域为R,又f(-x)=log2-x+=log2=-log2(x+)=-f(x),f(x)是奇函数.方法二 易知f(x)的定义域为R,又f(-x)+f(x)=log2-x+log2(x+)=log21=0,即f(-x)=-f(x),f(x)为奇函数.(3)由|x-2|0,得x2.f(x)的定义域x|x2关于原点不对称,故f(x)为非奇非偶函数.变式训练1:判断下列各函数的奇偶性:(1)f(x)=(x-2);(2)f(x)=;(3)f(x)=解:(1)由0,得定义域为-2,2),关于原点不对称,故f(x)为非奇非偶函数.(2)由得定义域为(-1,0)(0,1).这时f(x)=.f(-x)=-f(x)为偶函数.(3)x-1时,f(x)=x+2,-x1,f(-x)=-(-x)+2=x+2=f(x).x1时,f(x)=-x+2,-x-1,f(-x)=x+2=f(x).-1x1时,f(x)=0,-1-x1,f(-x)=0=f(x).对定义域内的每个x都有f(-x)=f(x).因此f(x)是偶函数.例2 已知函数f(x),当x,yR时,恒有f(x+y)=f(x)+f(y).(1)求证:f(x)是奇函数;(2)如果xR+,f(x)0,并且f(1)=-,试求f(x)在区间-2,6上的最值.(1)证明: 函数定义域为R,其定义域关于原点对称.f(x+y)=f(x)+f(y),令y=-x,f(0)=f(x)+f(-x).令x=y=0,f(0)=f(0)+f(0),得f(0)=0.f(x)+f(-x)=0,得f(-x)=-f(x),f(x)为奇函数.(2)解:方法一 设x,yR+,f(x+y)=f(x)+f(y),f(x+y)-f(x)=f(y).xR+,f(x)0,f(x+y)-f(x)0,f(x+y)f(x).x+yx,f(x)在(0,+)上是减函数.又f(x)为奇函数,f(0)=0,f(x)在(-,+)上是减函数.f(-2)为最大值,f(6)为最小值.f(1)=-,f(-2)=-f(2)=-2f(1)=1,f(6)=2f(3)=2f(1)+f(2)=-3.所求f(x)在区间-2,6上的最大值为1,最小值为-3.方法二 设x1x2,且x1,x2R.则f(x2-x1)=fx2+(-x1)=f(x2)+f(-x1)=f(x2)-f(x1).x2-x10,f(x2-x1)0.f(x2)-f(x1)0.即f(x)在R上单调递减.f(-2)为最大值,f(6)为最小值.f(1)=-, f(-2)=-f(2)=-2f(1)=1,f(6)=2f(3)=2f(1)+f(2)=-3.所求f(x)在区间-2,6上的最大值为1,最小值为-3.变式训练2:已知f(x)是R上的奇函数,且当x(-,0)时,f(x)=-xlg(2-x),求f(x)的解析式.解:f(x)是奇函数,可得f(0)=-f(0),f(0)=0.当x0时,-x0,由已知f(-x)=xlg(2+x),-f(x)=xlg(2+x),即f(x)=-xlg(2+x) (x0).f(x)= 即f(x)=-xlg(2+|x|) (xR).例3 已知函数f(x)的定义域为R,且满足f(x+2)=-f(x).(1)求证:f(x)是周期函数;(2)若f(x)为奇函数,且当0x1时,f(x)=x,求使f(x)=-在0,2 009上的所有x的个数.(1)证明: f(x+2)=-f(x),f(x+4)=-f(x+2)=-f(x)=f(x),f(x)是以4为周期的周期函数.(2)解: 当0x1时,f(x)=x,设-1x0,则0-x1,f(-x)=(-x)=-x.f(x)是奇函数,f(-x)=-f(x),-f(x)=-x,即f(x)= x. 故f(x)= x(-1x1) 又设1x3,则-1x-21,f(x-2)=(x-2), 又f(x-2)=-f(2-x)=-f(-x)+2)=-f(-x)=-f(x),-f(x)=(x-2),f(x)=-(x-2)(1x3). f(x)=由f(x)=-,解得x=-1.f(x)是以4为周期的周期函数.故f(x)=-的所有x=4n-1 (nZ). 令04n-12 009,则n,又nZ,1n502 (nZ),在0,2 009上共有502个x使f(x)=-.变式训练3:已知函数f(x)=x2+|x-a|+1,aR.(1)试判断f(x)的奇偶性;(2)若-a,求f(x)的最小值.解:(1)当a=0时,函数f(-x)=(-x)2+|-x|+1=f(x),此时,f(x)为偶函数.当a0时,f(a)=a2+1,f(-a)=a2+2|a|+1,f(a)f(-a),f(a)-f(-a),此时,f(x) 为非奇非偶函数.(2)当xa时,f(x)=x2-x+a+1=(x-)2+a+,a,故函数f(x)在(-,a上单调递减,从而函数f(x)在(-,a上的最小值为f(a)=a2+1.当xa时,函数f(x)=x2+x-a+1=(x+)2-a+,a-,故函数f(x)在a,+)上单调递增,从而函数f(x)在a,+)上的最小值为f(a)=a2+1. 综上得,当-a时,函数f(x)的最小值为a2+1.小结归纳1奇偶性是某些函数具有的一种重要性质,对一个函数首先应判断它是否具有这种性质. 判断函数的奇偶性应首先检验函数的定义域是否关于原点对称,然后根据奇偶性的定义判断(或证明)函数是否具有奇偶性. 如果要证明一个函数不具有奇偶性,可以在定义域内找到一对非零实数a与a,验证f(a)±f(a)0.2对于具有奇偶性的函数的性质的研究,我们可以重点研究y轴一侧的性质,再根据其对称性得到整个定义域上的性质.3函数的周期性:第一应从定义入手,第二应结合图象理解.第5课时 指数函数基础过关1根式:(1) 定义:若,则称为的次方根 当为奇数时,次方根记作_; 当为偶数时,负数没有次方根,而正数有两个次方根且互为相反数,记作_(a>0).(2) 性质: ; 当为奇数时,; 当为偶数时,_ 2指数:(1) 规定: a0 (a0); a-p ; .(2) 运算性质: (a>0, r、Q) (a>0, r、Q) (a>0, r、Q)注:上述性质对r、R均适用.3指数函数: 定义:函数 称为指数函数,1) 函数的定义域为 ;2) 函数的值域为 ;3) 当_时函数为减函数,当_时为增函数. 函数图像:1) 过点 ,图象在 ;2) 指数函数以 为渐近线(当时,图象向 无限接近轴,当时,图象向 无限接近x轴);3)函数的图象关于 对称. 函数值的变化特征: 典型例题例1. 已知a=,b=9.求: (1) (2).解:(1)原式=.÷a·= =a.a=,原式=3.(2)方法一 化去负指数后解. a=a+b=方法二 利用运算性质解.a=a+b=变式训练1:化简下列各式(其中各字母均为正数):(1)(2)解:(1)原式=(2)原式=-例2. 函数f(x)=x2-bx+c满足f(1+x)=f(1-x)且f(0)=3,则f(bx)与f(cx)的大小关系是 ( )A.f(bx)f(cx) B.f(bx)f(cx)C.f(bx)f(cx) D.大小关系随x的不同而不同解:A变式训练2:已知实数a、b满足等式,下列五个关系式:0ba;ab0;0ab;ba0;a=b.其中不可能成立的关系式有 ( )A.1个 B.2个 C.3个 D.4个解:B例3. 求下列函数的定义域、值域及其单调区间:(1)f(x)=3;(2)g(x)=-(.解:(1)依题意x2-5x+40,解得x4或x1,f(x)的定义域是(-,14,+).令u=x(-,14,+),u0,即0,而f(x)=330=1,函数f(x)的值域是1,+).u=,当x(-,1时,u是减函数,当x4,+)时,u是增函数.而31,由复合函数的单调性可知,f(x)=3在(-,1上是减函数,在4,+)上是增函数.故f(x)的增区间是4,+),减区间是(-,1.(2)由g(x)=-(函数的定义域为R,令t=(x (t0),g(t)=-t2+4t+5=-(t-2)2+9,t0,g(t)=-(t-2)2+99,等号成立的条件是t=2,即g(x)9,等号成立的条件是(=2,即x=-1,g(x)的值域是(-,9.由g(t)=-(t-2)2

    注意事项

    本文(2009-2010学年高三数学140分突破一轮复习必备精品2doc--高中数学 .doc)为本站会员(飞****)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开