欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    2010年高考数学解答题分类汇编——函数doc--高中数学 .doc

    • 资源ID:41790202       资源大小:3.12MB        全文页数:35页
    • 资源格式: DOC        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2010年高考数学解答题分类汇编——函数doc--高中数学 .doc

    永久免费组卷搜题网2010年高考数学试题分类汇编函数(2010上海文数)22.(本题满分16分)本题共有3个小题,第1小题满分3分,第2小题满分5分,第3小题满分8分。若实数、满足,则称比接近.(1)若比3接近0,求的取值范围;(2)对任意两个不相等的正数、,证明:比接近;(3)已知函数的定义域.任取,等于和中接近0的那个值.写出函数的解析式,并指出它的奇偶性、最小正周期、最小值和单调性(结论不要求证明).解析:(1) xÎ(-2,2);(2) 对任意两个不相等的正数a、b,有,因为,所以,即a2b+ab2比a3+b3接近;(3) ,kÎZ,f(x)是偶函数,f(x)是周期函数,最小正周期T=p,函数f(x)的最小值为0,函数f(x)在区间单调递增,在区间单调递减,kÎZ(2010湖南文数)21(本小题满分13分)已知函数其中a<0,且a-1.()讨论函数的单调性;()设函数(e是自然数的底数)。是否存在a,使在a,-a上为减函数?若存在,求a的取值范围;若不存在,请说明理由。(2010浙江理数) (22)(本题满分14分)已知是给定的实常数,设函数,是的一个极大值点 ()求的取值范围;()设是的3个极值点,问是否存在实数,可找到,使得的某种排列(其中=)依次成等差数列?若存在,求所有的及相应的;若不存在,说明理由解析:本题主要考查函数极值的概念、导数运算法则、导数应用及等差数列等基础知识,同时考查推理论证能力、分类讨论等综合解题能力和创新意识。()解:f(x)=ex(x-a) 令于是,假设(1) 当x1=a 或x2=a时,则x=a不是f(x)的极值点,此时不合题意。(2) 当x1a且x2a时,由于x=a是f(x)的极大值点,故x1<a<x2.即即所以b-a所以b的取值范围是(-,-a)此时或(2)当时,则或于是此时综上所述,存在b满足题意,当b=-a-3时,时,时,(2010全国卷2理数)(22)(本小题满分12分)设函数()证明:当时,;()设当时,求a的取值范围【命题意图】本题主要考查导数的应用和利用导数证明不等式,考查考生综合运用知识的能力及分类讨论的思想,考查考生的计算能力及分析问题、解决问题的能力.【参考答案】【点评】导数常作为高考的压轴题,对考生的能力要求非常高,它不仅要求考生牢固掌握基础知识、基本技能,还要求考生具有较强的分析能力和计算能力.估计以后对导数的考查力度不会减弱。作为压轴题,主要是涉及利用导数求最值解决恒成立问题,利用导数证明不等式等,常伴随对参数的讨论,这也是难点之所在.(2010陕西文数)21、(本小题满分14分)已知函数f(x)=,g(x)=alnx,aR。(1) 若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值及该切线的方程;(2) 设函数h(x)=f(x)- g(x),当h(x)存在最小之时,求其最小值(a)的解析式;(3) 对(2)中的(a),证明:当a(0,+)时, (a)1.解 (1)f(x)=,g(x)=(x>0),由已知得 =alnx,=, 解德a=,x=e2,两条曲线交点的坐标为(e2,e) 切线的斜率为k=f(e2)= ,切线的方程为y-e=(x- e2). (2)由条件知 当a.>0时,令h (x)=0,解得x=,所以当0 < x< 时 h (x)<0,h(x)在(0,)上递减;当x>时,h (x)>0,h(x)在(0,)上递增。所以x>是h(x)在(0, + )上的唯一极致点,且是极小值点,从而也是h(x)的最小值点。所以 (a)=h()= 2a-aln=2当a     0时,h(x)=(1/2-2a) /2x>0,h(x)在(0,+)递增,无最小值。故 h(x) 的最小值 (a)的解析式为2a(1-ln2a) (a>o)(3)由(2)知 (a)=2a(1-ln2a) 则  1(a )=-2ln2a,令 1(a )=0 解得 a =1/2当 0<a<1/2时, 1(a )>0,所以 (a ) 在(0,1/2) 上递增当 a>1/2 时,  1(a )<0,所以(a ) 在 (1/2, +)上递减。所以(a )在(0, +)处取得极大值(1/2 )=1因为(a )在(0, +)上有且只有一个极致点,所以(1/2)=1也是(a)的最大值所当a属于 (0, +)时,总有(a)    1(2010辽宁文数)(21)(本小题满分12分)已知函数.()讨论函数的单调性; KS*5U.C#()设,证明:对任意,.解:() f(x)的定义域为(0,+),.当a0时,0,故f(x)在(0,+)单调增加;当a1时,0, 故f(x)在(0,+)单调减少;当1a0时,令0,解得x=.当x(0, )时, 0;x(,+)时,0, 故f(x)在(0, )单调增加,在(,+)单调减少.()不妨假设x1x2.由于a2,故f(x)在(0,+)单调减少.所以等价于4x14x2,即f(x2)+ 4x2f(x1)+ 4x1.令g(x)=f(x)+4x,则+4.于是0.从而g(x)在(0,+)单调减少,故g(x1) g(x2),即f(x1)+ 4x1f(x2)+ 4x2,故对任意x1,x2(0,+) ,.(2010辽宁理数)(21)(本小题满分12分)已知函数(I)讨论函数的单调性;(II)设.如果对任意,求的取值范围。解:()的定义域为(0,+). .当时,0,故在(0,+)单调增加;当时,0,故在(0,+)单调减少;当-10时,令=0,解得.则当时,0;时,0.故在单调增加,在单调减少.()不妨假设,而-1,由()知在(0,+)单调减少,从而 ,等价于, 令,则等价于在(0,+)单调减少,即 . 从而 故a的取值范围为(-,-2. 12分(2010全国卷2文数)(21)(本小题满分12分) 已知函数f(x)=x-3ax+3x+1。()设a=2,求f(x)的单调期间;()设f(x)在区间(2,3)中至少有一个极值点,求a的取值范围。【解析】本题考查了导数在函数性质中的应用,主要考查了用导数研究函数的单调区间、极值及函数与方程的知识。(1)求出函数的导数,由导数大于0,可求得增区间,由导数小于0,可求得减区间。(2)求出函数的导数,在(2,3)内有极值,即为在(2,3)内有一个零点,即可根据,即可求出A的取值范围。(2010江西理数)19. (本小题满分高考资源*网12分)设函数。(1)当a=1时,求的单调区间。(2)若在上的最大值为,求a的值。【解析】考查函数导数运算、利用导数处理函数最值等知识。 解:对函数求导得:,定义域为(0,2)(1) 单调性的处理,通过导数的零点进行穿线判别符号完成。当a=1时,令当为增区间;当为减函数。(2) 区间上的最值问题,通过导数得到单调性,结合极值点和端点的比较得到,确定待定量a的值。当有最大值,则必不为减函数,且>0,为单调递增区间。最大值在右端点取到。(2010安徽文数)20.(本小题满分12分)设函数,求函数的单调区间与极值。【命题意图】本题考查导数的运算,利用导数研究函数的单调性与极值的方法,考查综合应用数学知识解决问题的能力。【解题指导】(1)对函数求导,对导函数用辅助角公式变形,利用导数等于0得极值点,通过列表的方法考查极值点的两侧导数的正负,判断区间的单调性,求极值.【思维总结】对于函数解答题,一般情况下都是利用导数来研究单调性或极值,利用导数为0得可能的极值点,通过列表得每个区间导数的正负判断函数的单调性,进而得出极值点.(2010重庆文数)(19) (本小题满分12分), ()小问5分,()小问7分.)已知函数(其中常数a,bR),是奇函数.()求的表达式;()讨论的单调性,并求在区间1,2上的最大值和最小值.(2010浙江文数)(21)(本题满分15分)已知函数(a-b)<b)。(I)当a=1,b=2时,求曲线在点(2,)处的切线方程。(II)设是的两个极值点,是的一个零点,且,证明:存在实数,使得 按某种顺序排列后的等差数列,并求(2010重庆理数)(18)(本小题满分13分,(I)小问5分,(II)小问8分)已知函数其中实数。(I) 若a=-2,求曲线在点处的切线方程;(II) 若在x=1处取得极值,试讨论的单调性。(2010山东文数)(21)(本小题满分12分)已知函数(I)当时,求曲线在点处的切线方程;(II)当时,讨论的单调性.(2010北京文数)(20)(本小题共13分)已知集合对于,定义A与B的差为A与B之间的距离为()当n=5时,设,求,;()证明:,且;() 证明:三个数中至少有一个是偶数()解:=(1,0,1,0,1) =3()证明:设 因为,所以从而由题意知当时,当时,所以()证明:设记由()可知所以中1的个数为k,中1的个数为设是使成立的的个数。则由此可知,三个数不可能都是奇数即三个数中至少有一个是偶数。(2010北京理数)(18)(本小题共13分)已知函数()=In(1+)-+(0)。()当=2时,求曲线=()在点(1,(1)处的切线方程;()求()的单调区间。解:(I)当时, 由于, 所以曲线在点处的切线方程为 即 (II),. 当时,. 所以,在区间上,;在区间上,. 故得单调递增区间是,单调递减区间是. 当时,由,得, 所以,在区间和上,;在区间上, 故得单调递增区间是和,单调递减区间是. 当时, 故得单调递增区间是.当时,得,.所以没在区间和上,;在区间上,故得单调递增区间是和,单调递减区间是(2010四川理数)(22)(本小题满分14分)设(且),g(x)是f(x)的反函数.()设关于的方程求在区间2,6上有实数解,求t的取值范围;()当ae(e为自然对数的底数)时,证明:;()当0a时,试比较与4的大小,并说明理由.本小题考产函数、反函数、方程、不等式、导数及其应用等基础知识,考察化归、分类整合等数学思想方法,以及推理论证、分析与解决问题的能力.解:(1)由题意,得ax0故g(x),x(,1)(1,)由得t(x-1)2(7-x),x2,6则t'=-3x2+18x-15=-3(x-1)(x-5)列表如下:x2(2,5)5(5,6)6t'+0-t5极大值3225所以t最小值5,t最大值32所以t的取值范围为5,325分(2) ln() ln令u(z)lnz22lnzz,z0则u'(z)(1)20所以u(z)在(0,)上是增函数又因为10,所以u()u(1)0即ln0 即9分(3)设a,则p1,1f(1)3当n1时,|f(1)1|24当n2时设k2,kN *时,则f(k) 1所以1f(k)1从而n1n-1+n+1-n1所以nf(1)n1n4综上所述,总有|n|4(2010天津文数)(20)(本小题满分12分)已知函数f(x)=,其中a>0. ()若a=1,求曲线y=f(x)在点(2,f(2)处的切线方程;()若在区间上,f(x)>0恒成立,求a的取值范围.【解析】本小题主要考查曲线的切线方程、利用导数研究函数的单调性与极值、解不等式等基础知识,考查运算能力及分类讨论的思想方法.满分12分.()解:当a=1时,f(x)=,f(2)=3;f(x)=, f(2)=6.所以曲线y=f(x)在点(2,f(2)处的切线方程为y-3=6(x-2),即y=6x-9.()解:f(x)=.令f(x)=0,解得x=0或x=.以下分两种情况讨论:(1) 若,当x变化时,f(x),f(x)的变化情况如下表:X0f(x)+0-f(x)极大值 当等价于 解不等式组得-5<a<5.因此.(2) 若a>2,则.当x变化时,f(x),f(x)的变化情况如下表:X0f(x)+0-0+f(x)极大值极小值当时,f(x)>0等价于即解不等式组得或.因此2<a<5. 综合(1)和(2),可知a的取值范围为0<a<5.(2010天津理数)(21)(本小题满分14分)已知函数()求函数的单调区间和极值;()已知函数的图象与函数的图象关于直线对称,证明当时,()如果,且,证明【解析】本小题主要考查导数的应用,利用导数研究函数的单调性与极值等基础知识,考查运算能力及用函数思想分析解决问题的能力,满分14分()解:f令f(x)=0,解得x=1当x变化时,f(x),f(x)的变化情况如下表X()1()f(x)+0-f(x)极大值所以f(x)在()内是增函数,在()内是减函数。函数f(x)在x=1处取得极大值f(1)且f(1)=()证明:由题意可知g(x)=f(2-x),得g(x)=(2-x)令F(x)=f(x)-g(x),即于是当x>1时,2x-2>0,从而(x)>0,从而函数F(x)在1,+)是增函数。又F(1)=F(x)>F(1)=0,即f(x)>g(x).)证明:(1)若(2)若根据(1)(2)得由()可知,>,则=,所以>,从而>.因为,所以,又由()可知函数f(x)在区间(-,1)内事增函数,所以>,即>2.(2010福建文数)22(本小题满分14分) 已知函数f(x)=的图像在点P(0,f(0))处的切线方程为y=3x-2()求实数a,b的值;()设g(x)=f(x)+是上的增函数。KS*5U.C#O (i)求实数m的最大值; (ii)当m取最大值时,是否存在点Q,使得过点Q的直线若能与曲线y=g(x)围成两个封闭图形,则这两个封闭图形的面积总相等?若存在,求出点Q的坐标;若不存在,说明理由。KS*5U.C#O(2010福建文数)21(本小题满分12分)某港口要将一件重要物品用小艇送到一艘正在航行的轮船上,在小艇出发时,轮船位于港口北偏西30°且与该港口相距20海里的处,并正以30海里/小时的航行速度沿正东方向匀速行驶。假设该小艇沿直线方向以海里/小时的航行速度匀速行驶,经过小时与轮船相遇。KS*5U.C#O()若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少?()为保证小艇在30分钟内(含30分钟)能与轮船相遇,试确定小艇航行速度的最小值;()是否存在,使得小艇以海里/小时的航行速度行驶,总能有两种不同的航行方向与轮船相遇?若存在,试确定的取值范围;若不存在,请说明理由。(2010全国卷1理数)(20)(本小题满分12分) 已知函数.()若,求的取值范围;()证明: .(2010四川文数)(22)(本小题满分14分)设(且),g(x)是f(x)的反函数.()求;()当时,恒有成立,求t的取值范围;()当0a时,试比较f(1)+f(2)+f(n)与的大小,并说明理由.(2010湖北文数)21.(本小题满分14分)设函数,其中a0,曲线在点P(0,)处的切线方程为y=1()确定b、c的值()设曲线在点()及()处的切线都过点(0,2)证明:当时,()若过点(0,2)可作曲线的三条不同切线,求a的取值范围。(2010湖北文数)19.(本小题满分12分)已知某地今年年初拥有居民住房的总面积为a(单位:m2),其中有部分旧住房需要拆除。当地有关部门决定每年以当年年初住房面积的10%建设新住房,同事也拆除面积为b(单位:m2)的旧住房。()分别写出第一年末和第二年末的实际住房面积的表达式:()如果第五年末该地的住房面积正好比今年年初的住房面积增加了30%,则每年拆除的旧住房面积b是多少?(计算时取1.15=1.6)(2010山东理数)(22)(本小题满分14分)已知函数.()当时,讨论的单调性;()设当时,若对任意,存在,使,求实数取值范围.()当时,在(0,1)上是减函数,在(1,2)上是增函数,所以对任意,有,又已知存在,使,所以,即存在,使,即,即,所以,解得,即实数取值范围是。【命题意图】本题将导数、二次函数、不等式知识有机的结合在一起,考查了利用导数研究函数的单调性、利用导数求函数的最值以及二次函数的最值问题,考查了同学们分类讨论的数学思想以及解不等式的能力;考查了学生综合运用所学知识分析问题、解决问题的能力。(1)直接利用函数与导数的关系讨论函数的单调性;(2)利用导数求出的最小值、利用二次函数知识或分离常数法求出在闭区间1,2上的最大值,然后解不等式求参数。(2010湖南理数)20.(本小题满分13分)已知函数对任意的,恒有。()证明:当时,;()若对满足题设条件的任意b,c,不等式恒成立,求M的最小值。解析:(2010湖北理数)17(本小题满分12分) 为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层。某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元。该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)=若不建隔热层,每年能源消耗费用为8万元。设f(x)为隔热层建造费用与20年的能源消耗费用之和。()求k的值及f(x)的表达式。()隔热层修建多厚时,总费用f(x)达到最小,并求最小值。(2010福建理数)20(本小题满分14分)()已知函数,。(i)求函数的单调区间;(ii)证明:若对于任意非零实数,曲线C与其在点处的切线交于另一点,曲线C与其在点处的切线交于另一点,线段()对于一般的三次函数()(ii)的正确命题,并予以证明。【命题意图】本小题主要考查函数、导数、定积分等基础知识,考查抽象概括能力、运算求解能力、推理论证能力,考查函数与方程思想、数形结合思想、化归与转化思想、特殊与一般思想。【解析】()(i)由得=,当和时,;当时,因此,的单调递增区间为和,单调递减区间为。(2010湖北理数)(2010安徽理数)17、(本小题满分12分) 设为实数,函数。 ()求的单调区间与极值;()求证:当且时,。(2010江苏卷)20、(本小题满分16分)设是定义在区间上的函数,其导函数为。如果存在实数和函数,其中对任意的都有>0,使得,则称函数具有性质。(1)设函数,其中为实数。(i)求证:函数具有性质; (ii)求函数的单调区间。(2)已知函数具有性质。给定设为实数,且,若|<|,求的取值范围。解析 本小题主要考查函数的概念、性质、图象及导数等基础知识,考查灵活运用数形结合、分类讨论的思想方法进行探索、分析与解决问题的综合能力。满分16分。(1)(i)时,恒成立,函数具有性质;(ii)(方法一)设,与的符号相同。当时,故此时在区间上递增;当时,对于,有,所以此时在区间上递增;当时,图像开口向上,对称轴,而,对于,总有,故此时在区间上递增;(方法二)当时,对于, 所以,故此时在区间上递增;当时,图像开口向上,对称轴,方程的两根为:,而 当时,故此时在区间 上递减;同理得:在区间上递增。综上所述,当时,在区间上递增; 当时,在上递减;在上递增。(2)(方法一)由题意,得:又对任意的都有>0,所以对任意的都有,在上递增。又。当时,且, 综合以上讨论,得:所求的取值范围是(0,1)。(方法二)由题设知,的导函数,其中函数对于任意的都成立。所以,当时,从而在区间上单调递增。当时,有,得,同理可得,所以由的单调性知、,从而有|<|,符合题设。当时,于是由及的单调性知,所以|,与题设不符。当时,同理可得,进而得|,与题设不符。因此综合、得所求的的取值范围是(0,1)。 永久免费组卷搜题网

    注意事项

    本文(2010年高考数学解答题分类汇编——函数doc--高中数学 .doc)为本站会员(飞****)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开