2022《等比数列的前n项和》教学设计.docx
2022等比数列的前n项和教学设计等比数列的前n项和教学设计作为一位杰出的教职工,通常须要用到教学设计来协助教学,借助教学设计可使学生在单位时间内能够学到更多的学问。如何把教学设计做到重点突出呢?下面是我细心整理的等比数列的前n项和教学设计,欢迎大家借鉴与参考,希望对大家有所帮助。等比数列的前n项和教学设计1一、教材分析:等比数列的前n项和是中学数学必修五其次章第3、3节的内容。它是“等差数列的前n项和”与“等比数列”内容的持续。这部分内容授课时间2课时,本节课作为第一课时,重在探讨等比数列的前n项和公式的推导及简洁应用,教学中注意公式的形成推导过程并充分揭示公式的结构特征和内在联系。意在培育学生类比分析、分类探讨、归纳推理、演绎推理等数学思想。在高考中占有重要地位。二、教学目标依据上述教学内容的地位和作用,结合学生的认知水平和年龄特点,确定本节课的教学目标如下:1、学问与技能:理解等比数列的前n项和公式的推导方法;驾驭等比数列的前n项和公式并能运用公式解决一些简洁问题。2、过程与方法:通过公式的推导过程,提高学生的建模意识及探究问题、类比分析与解决问题的实力,培育学生从特别到一般的思维方法,渗透方程思想、分类探讨思想及转化思想,优化思维品质。3、情感与看法:通过自主探究,合作沟通,激发学生的求知欲,体验探究的艰辛,体会胜利的喜悦,感受思维的奇异美、结构的对称美、形式的简洁美、数学的严谨美。三、教学重点和难点重点:等比数列的前项和公式的推导及其简洁应用。难点:等比数列的前项和公式的推导。重难点确定的依据:从教材体系来看,它为后继学习供应了学问基础,具有承上启下的作用;从学问本身特点来看,等比数列前n项和公式的推导方法和等差数列的的前n项和公式的推导方法可比性低,无法用类比的方法进行,它须要对等比数列的概念和性质能充分理解并融会贯穿;从学生认知水平来看,学生的探究实力和用数学语言沟通的实力还有待提高。四、教法学法分析通过创设问题情境,组织学生探讨,让学生在尝摸索索中不断地发觉问题,以激发学生的求知欲,并在过程中获得自信念和胜利感。强调学问的严谨性的同时重学问的形成过程,五、教学过程(一)创设情境,引入新知从故事入手:传闻,波斯国王下令要奖赏国际象棋的独创者,独创者对国王说,在棋盘的第一格内放上一粒麦子,在其次格内放两粒麦子,第三格内放4粒,第四格内放8米,按这样的规律放满64格棋盘格。结果是国王倾尽国家财力还不够支付。同学们,这几粒麦子,怎能会让国王赔上整个国家的财力?关键就在于计算麦粒的总数。很明显,这是一个以1为首项,以2为公比的等比数列前64项和的问题,即如何计算1+2+22+263?(二)师生探讨、探究新知总结归纳:当q=1时,Sn=na1当q1时,公式说明:对等比数列an而言,a1,an,Sn,n,q知三可求二运用公式时要依据条件选取适当的公式,特殊留意的是,在公比不知道的状况下要分类探讨;错位相减的思想方法。(三)例题讲解,形成技能例1:等比数列an中,已知a1=4,q=1/2,求S10 已知a1=1,an=243,q=3,求Sn已知a1=2,S3=26,求q。通过例题一,渗透知三求二的思想。练习:求等比数列1,1/2,1/4,1/8,1/512的各项的和。例2、等比数列an中,已知a1=3,S3=9,求q,an。练习:等比数列an中,若S3=7/2,S6=63/2,求an、S9。通过练习得出等比数列前项和的一特性质:成等比数列。例3:(1)求数列1+1/2,2+1/4,3+1/8, n+,的前n项和。首先由学生分析思路,视察出这组数列的特点,它既不是等差数列,也不是等比数列,而是等差加等比。归纳出这类数列求和的方法。思索:求和:1+a+a2+a3+an(四)课堂小结以问题的形式出现,引导学生回顾公式、推导方法,激励学生主动回答,然后老师再从学问点及数学思想方法两方面总结。设计意图:以此培育学生的口头表达实力,归纳概括实力。六、板书设计略七、课后记本节课的设计体现呢“以学生为主体,老师是课堂活动的组织者、引导者和参加者”的现代教化理念。在教学的每一个环节中军设计了问题,始终以老师提出问题,引导学生解决问题的方式进行,让课堂活动变得生动而愉悦。等比数列的前n项和教学设计2一、教材分析1.从在教材中的地位与作用来看等比数列的前n项和是数列这一章中的一个重要内容,从教材的编写依次上来看,等比数列的前n项和是第一章“数列”第六节的内容,它是“等差数列的前n项和”与“等比数列”内容的持续、与前面学习的函数等学问也有着亲密的联系。就学问的应用价值上来看,它不仅在现实生活中有着广泛的实际应用,如储蓄、分期付款的有关计算等等,而且公式推导过程中所渗透的类比、化归、分类探讨、整体变换和方程等思想方法,都是学生今后学习和工作中必备的数学素养。就内容的人文价值上来看,等比数列的前n项和公式的探究与推导须要学生视察、分析、归纳、猜想,有助于培育学生的创新思维和探究精神,是培育学生应用意识和数学实力的良好载体。2.从学生认知角度来看从学生的思维特点看,很简单把本节内容与等差数列前n项和从公式的形成、特点等方面进行类比,这是主动因素,应因势利导不利因素是:本节公式的推导与等差数列前n项和公式的推导有着本质的不同,这对学生的思维是一个突破,另外,对于q = 1这一特别状况,学生往往简单忽视,尤其是在后面运用的过程中简单出错。3. 学情分析教学对象是刚进入高二的学生,虽然具有肯定的分析问题和解决问题的实力,逻辑思维实力也初步形成,但对问题的分析缺乏深刻性和严谨性。4. 重点、难点教学重点:公式的推导、公式的特点和公式的运用教学难点:公式的推导方法和公式的敏捷运用公式推导所运用的“错位相减法”是中学数学数列求和方法中最常用的方法之一,它蕴含了重要的数学思想,所以既是重点也是难点。二、目标分析1学问与技能目标:理解等比数列的前n项和公式的推导方法;驾驭等比数列的前n项和公式并能运用公式解决一些简洁问题。2.过程与方法目标:通过公式的推导过程,培育学生猜想、分析、综合的思维实力,提高学生的建模意识及探究问题、分析与解决问题的实力,体会公式探求过程中从特别到一般的思维方法,渗透方程思想、分类探讨思想及转化思想,优化思维品质。3情感看法与价值观:通过经验对公式的探究,激发学生的求知欲,激励学生大胆尝试、勇于探究、敢于创新,磨练思维品质,从中获得胜利的体验,感受思维的奇异美、结构的对称美、形式的简洁美、数学的严谨美。用数学的观点看问题,一些所谓不行理解的事就可以给出合理的说明,从而帮助我们用科学的看法相识世界。三、教学方法与教学手段本节课属于新授课型,主要利用计算机协助教学,采纳启发探究,合作学习,自主学习等的教学模式.四、教学过程分析学生是认知的主体,也是教学活动的主体,设计教学过程必需遵循学生的认知规律,引导学生去经验学问的形成与发展过程,结合本节课的特点,我根据自主学习的教学模式来设计如下的教学过程,目的是在教学过程中促使学生自主学习,培育自主学习的习惯和意识,形成自主学习的实力。1创设情境,提出问题一个穷人到富人那里去借钱,原以为富人不情愿,哪知富人一口答应了下来,但提出了如下条件:在30天中,富人第一天借给穷人1万元,其次天借给穷人2万元,以后每天所借的钱数都比上一天多1万;但借钱第一天,穷人还1分钱,其次天还2分钱,以后每天所还的钱数都是上一天的两倍,30天后互不相欠.穷人听后觉得挺划算,本想定下来,但又想到此富人是吝啬出了名的,怕上当受骗,所以很犯难。”请在座的同学思索探讨一下,穷人能否向富人借钱?启发引导学生数学地视察问题,构建数学模型。学生直觉认为穷人可以向富人借钱,老师引导学生自主探求,得出:穷人30天借到的钱:(万元)穷人须要还的钱:?2学生探究,解决情境(2)老师紧接着把如何求?的问题让学生探究,若用公比2乘以上面等式的两边,得到若式减去式,可以消去相同的项,得到:(分) 1073(万元) 465(万元)由此得出穷人不能向富人借钱留出时间让学生充分地比较,等比数列前n项和的公式推导关键是变“加”为“减”,在老师看来这是很明显的事,但在学生看来却是“不行思议”的,因此教学中应着力在这儿做文章,从而培育学生的辩证思维实力解决情境问题:经过比较、探讨,学生发觉:(1)、(2)两式有很多相同的项,把两式相减,相同的项就可以消去了,得到: 1073(万元) 465(万元) 。老师强调指出:这就是错位相减法,并要求学生纵观全过程,反思:为什么(1)式两边要同乘以2呢?经过繁难的计算之苦后,突然发觉上述解法,不禁惊呼:真是太简洁了,让学生在探究过程中,充分感受到胜利的情感体验,从而增加学习数学的爱好和学好数 学的信念,同时也为推导一般等比数列前n项和供应了方法。3类比联想,解决问题这时我再顺势引导学生将结论一般化,设等比数列为,公比为q,如何求它的前n项和?让学生自主完成,然后对个别学生进行指导。一般等比数列前n项和:即方法:错位相减法这里的q能不能等于1?等比数列中的公比能不能为1?q=1时是什么数列?此时sn=?在学生推导完成之后,我再问:由得在老师的指导下,让学生从特别到一般,从已知到未知,步步深化,让学生自己探究公式,从而体验到学习的开心和成就感。4小组合作,沟通展示探究1求和探究2求等比数列的第5项到第10项的和方法1: 视察、发觉:方法2:此等比数列的连续项从第5项到第10项构成一个新的等比数列。探究3:求的前n项和采纳变式教学设计题组,深化学生对公式的相识和理解,通过干脆套用公式、变式运用公式、探讨公式特点这三个层次的问题解决,促进学生新的数学认知结构的形成通过以上形式,让全体学生都参加教学,以此培育学生自主学习的意识解题时,以学生分析为主,老师适时赐予点拨。5.总结归纳,加深理解以问题的形式出现,引导学生回顾公式、推导方法,激励学生主动回答,然后老师再从学问点及数学思想方法两方面总结。1.等比数列的前n项和公式2. 数学思想: (1)分类探讨 (2)方程思想3.数学方法: 错位相减法以此培育学生的口头表达实力,归纳概括实力。6当堂检测(1)口答:在公比为q的等比数列中若,则_,若,则_若=3,=81,求q及 ,若 ,求及q.(2)推断是非: ( ) ( )若且,则( )对公式的再相识,剖析公式中的基本量及结构特征,识记公式,并加强计算实力的训练。7课后作业,分层练习必做: P30习题 13 A组 第1题,选作题1:求的前n项和(2)思索题:能否用其他方法推导等比数列前n项和公式布置弹性作业以使各个层次的学生都有所发展. 让学有余力的学生有思索的空间,便于学生开展自主学习。五、评价分析本节课通过推导方法的探讨,使学生驾驭了等比数列前n项和公式错位相减:变加为减,等价转化;递推思想:纵横联系,揭示本质;学生从中深刻地领悟到推导过程中所蕴含的数学思想,培育了学生思维的深刻性、敏锐性、广袤性、批判性同时通过展示沟通,学生点评,老师总结,使学生既巩固了学问,又形成了技能,在此基础上,通过民主和谐的课堂氛围,培育了学生自主学习、合作沟通的学习习惯,也培育了学生勇于探究、不断创新的思维品质,形成学习实力。六、教学设计说明1情境设置生活化.本着新课程的教学理念,考虑到高二学生的心理特点,让学生学生初步了解“数学来源于生活”,采纳故事的形式创设问题情景,意在营造和谐、主动的学习气氛,激发学生主动探究的欲望。2问题探究活动化教学中本着以学生发展为本的理念,充分给学生想的时间、说的机会以及展示思维过程的舞台,通过他们自主学习、合作探究,展示学生解决问题的思想方法,共享学习成果,体验数学学习胜利的喜悦.通过师生之间不断合作和沟通,发展学生的数学视察实力和语言表达实力,培育学生思维的发散性和严谨性。3辨析质疑结构化在理解公式的基础上,刚好进行正反两方面的“短、平、快”填空和推断是非练习.通过总结、辨析和反思,强化了公式的结构特征,促进学生主动建构,有助于学生形成学问模块,优化学问体系。4巩固提高梯度化例题通过公式的正用和逆用进一步提高学生运用学问的实力;由教科书中的例题改编而成,并进行适当的变式,可以提高学生的模式识别的实力,培育学生思维的深刻性和敏捷性。5思路拓广数学化从整理学问提升到强化方法,由课内巩固延长到课外思索,变“学问本位”为“学生本位”,使数学学习成为提高学生素养的有效途径。以生活中的实例作为思索,让学生相识到数学来源于生活并应用于生活,生活中到处有数学6作业布置弹性化通过布置弹性作业,为学有余力的学生供应进一步发展的空间,有利于丰富学生的学问,拓展学生的视野,提高学生的数学素养七教学反思学生的依据高二学生心理特点、教材内容、遵循因材施教原则和启发性教学思想,本节课的教学策略与方法我采纳规则学习和问题解决策略,即“案例公式应用”,案例为浅层次要求,使学生有概括印象。公式为中层次要求,由浅入深,重难点集中推导讲解,便于突破。应用为综合要求,多角度、多情境中消化巩固所学,反馈验证本节教学目标的落实。其中,案例是基础,使学生感知教材;公式为关键,使学生理解教材;练习为应用,使学生巩固学问,举一反三。在这三步教学中,以启发性强的小设问层层推导,辅之以学生的分组小探讨并充分运用直观完整的板书和计算机课件等教辅用具、手段,变更老师讲、学生听的填鸭式教学模式,充分体现学生是主体,老师教学服务于学生的思路,而且学生通过“案例公式应用”,由浅入深,由感性到理性,由直观到抽象,不仅加深了学生理解巩固与应用,也培育了思维实力。这节课总体上感觉备课比较充分,各个环节相连接,能够形成一节完整就为系统的课。本节课教学过程分为导入新课、公式推导、合作探究、课堂小结、当堂检测、布置作业。本节课总体上讲对于内容的把握基本到位,对学生的定位精确,教学过程中留给学生思索的时间,以学生为主体。.亮点之处:学生成为课堂的主体,老师要甘当学生的绿叶由于数学的抽象、思维严谨等特点,学生往往对于一些较为困难或者改变多样的题目简单望而生畏,出现懒得动脑思索、动笔去做的现象。老师也常因为时间的限制不行能给学生过多的时间去做“无用功”。在本节课上我放手让学生去思索,让学生去摸索。不怕学生出错,就是让学生能够在摸索中增加思维实力、解题技能和计算阅历。特殊是在例3中,老师针对题目做了简要的分析和提示,让学生去尝试着解题。张漫同学的板书详尽,将思路方法概括表述出来,过程完整。只是结果出现了一个小错误,老师在点评过程中赐予指出,同时也个结果错误也是学生常常犯的。等比数列的前n项和教学设计3一、教材分析从教材的编写依次上来看,等比数列的前n项和是第三章“数列”第五节的内容,一方面它是“等差数列的前n项和”与“等比数列”内容的持续、与前面学习的函数等学问也有着亲密的联系,另一方面它又为进一步学习“数列的极限”等内容作打算。就学问的应用价值上来看,它是从大量数学问题和现实问题中抽象出来的一个模型,在公式推导中所蕴涵的数学思想方法如分类探讨等在各种数列求和问题中有着广泛的应用;另外它在如“分期付款”等实际问题的计算中也常常涉及到。就内容的人文价值上来看,等比数列的前n项和公式的探究与推导须要学生视察、分析、归纳、猜想,有助于培育学生的创新思维和探究精神,是培育学生应用意识和数学实力的良好载体。老师教学用书支配“等比数列的前n项和”这部分内容授课时间2课时,本节课作为第一课时,重在探讨等比数列的前n项和公式的推导及简洁应用,教学中注意公式的形成推导过程并充分揭示公式的结构特征和内在联系。二、教学目标依据课程标准,结合学生的认知水平和年龄特点,确定本节课的教学目标如下:学问与技能目标:理解等比数列的前n项和公式的推导方法;驾驭等比数列的前n项和公式并能运用公式解决一些简洁问题。过程与方法目标:通过公式的推导过程,提高学生的建模意识及探究问题、分析与解决问题的实力,体会公式探求过程中从特别到一般的思维方法,渗透方程思想、分类探讨思想及转化思想,优化思维品质。情感与看法目标:通过经验对公式的探究,激发学生的求知欲,激励学生大胆尝试、勇于探究、敢于创新,磨练思维品质,从中获得胜利的体验,感受思维的奇异美、结构的对称美、形式的简洁美、数学的严谨美。三、教学重点和难点重点:等比数列的前 项和公式的推导及其简洁应用。从教材体系来看,它为后继学习供应了学问基础,具有承上启下的作用;从学问特点而言,蕴涵丰富的思想方法;就实力培育来看,通过公式推导教学可培育学生的运用数学语言沟通表达的实力。突出重点方法:“抓三线、突重点”,即(一)学问技能线:问题情境公式推导公式运用;(二)过程与方法线:特别到一般、猜想归纳 错位相减法等转化、方程思想;(三)实力线:视察实力数学思想解决问题实力敏捷运用实力及严谨看法。难点:等比数列的前 项和公式的推导。从学生认知水平来看,学生的探究实力和用数学语言沟通的实力还有待提高。从学问本身特点来看,等比数列前n项和公式的推导方法和等差数列的的前n项和公式的推导方法可比性低,无法用类比的方法进行,它须要对等比数列的概念和性质能充分理解并融会贯穿,而学问的整合对学生来说恰又是比较困难的,而且错位相减法是第一次遇到,对学生来说是个簇新事物。突破难点手段:“抓两点,破难点”,即一抓学生情感和思维的兴奋点,激发他们的爱好,激励学生大胆猜想、主动探究,刚好地给以激励,使他们知难而进;二抓学问选择的切入点,从学生原有的认知水平和所需的学问特点入手,老师在学生主体下赐予适当的提示和指导。等比数列的前n项和教学设计4一、教学背景分析1教学内容分析本节课是中学数学(北师大版必修5)第一章第3节其次课时,是“等差数列的前n项和”与“等比数列”内容的持续,与函数等学问有着亲密的联系,也为以后学数列的求和,数学归纳法等做好铺垫。而且公式推导过程中所渗透的类比、化归、分类探讨、整体变换和方程等思想方法,都是学生今后学习和工作中必备的数学素养,如在“分期付款”等实际问题中也常常涉及到。本节以数学文化背境引入课题有助于提升学生的创新思维和探究精神,是提高数学文化素养和培育学生应用意识的良好载体。2学情分析从学生的思维特点看,很简单把本节内容与等差数列前n项和从公式的形成、特点等方面进行类比,这是主动因素,应因势利导。不利因素是,本节公式的推导与等差数列前n项和公式的推导有着本质的不同,这对学生的思维是一个突破,另外,对于q = 1这一特别状况,学生往往简单忽视,尤其是在后面运用的过程中简单出错。教学对象是高二理科班的学生,虽然具有肯定的分析问题和解决问题的实力,逻辑思维实力也初步形成,但由于年龄的缘由,思维尽管活跃、灵敏,却缺乏冷静、深刻,因此片面、不完全。二教学目标依据新课程标准及教材内容,结合学生的认知发展水平和心理特点,确定本节课的教学目标如下:1.学问与技能目标: 理解等比数列前n项和公式推导方法;驾驭等比数列前n项和公式并能运用公式解决一些简洁问题。2过程与方法目标:感悟并理解公式的推导过程,感受公式探求过程所蕴涵的从特别到一般的思维方法,渗透方程思想、分类探讨思想及转化思想,优化思维品质,初步提高学生的建模意识和探究、分析与解决问题的实力。3.情感与看法目标:通过经验对公式的探究过程,对学生进行思维严谨性的训练,激发学生的求知欲,激励学生大胆尝试、勇于探究、敢于创新,磨练思维品质,从中获得胜利的体验,感受数学的奇异美、结构的对称美、形式的简洁美和数学的严谨美。三重点,难点教学重点:等比数列前“等比数列的前n项和”项和公式的推导及其简洁应用。教学难点:公式的推导思想方法及公式应用中q与1的关系。四教学方法启发引导,探究发觉,类比。五 教学过程(一)借助数学文化背境提出问题在古印度,有个名叫西萨的人,独创了国际象棋,当时的印度国王大为赞许,对他说:我可以满意你的任何要求。西萨说:请给我棋盘的64个方格上,第一格放1粒小麦,其次格放2粒,第三格放4粒,往后每一格都是前一格的两倍,直至第64格。国王令宫廷数学家计算,结果出来后,国王大吃一惊。为什么呢?:设计这个数学文化背境目的是在引入课题的同时激发学生的爱好,调动学习的主动性。故事内容也紧扣本节课的主题与重点。问题1:同学们,你们知道西萨要的是多少粒小麦吗?引导学生写出麦粒总数“等比数列的前n项和”(二)师生互动,探究问题问题2:“等比数列的前n项和”有些学生会说用计算器来求(老师当然确定这种做法,但学生很快发觉比较难求。)问题3:同学们,我们来分析一下这个和式有什么特征?(学生会发觉,后一项都是前一项的2倍)问题4:假如我们把(1)式每一项都乘以2,就变成了它的后一项,那么我们若在此等式两边同以2,得到(2)式:“等比数列的前n项和”比较(1)(2)两式,你有什么发觉?(学生经过比较发觉:(1)、(2)两式有很多相同的项)问题5:将两式相减,相同的项就消去了,得到什么呢?。(学生会发觉:“等比数列的前n项和”:这五个问题层层深化,剖析了错位相减法中减的妙用,使学生简单接受为什么要错位相减,经过繁难的计算之后,突然发觉上述解法,也让学生感受到这种方法的奇妙。问题6:老师指出这就是错位相减法,并要求学生纵观全过程,反思为什么(1)式两边要同乘以2呢?:经过繁难的计算之苦后,突然发觉上述解法,让学生对错位相减法有一个深刻的相识,也为探究等比数列求和公式的推导做好铺垫。(三)类比联想,构建新知这时我再顺势引导学生将结论一般化。问题7:如何求等比数列“等比数列的前n项和”的前“等比数列的前n项和”项和“等比数列的前n项和”:即:“等比数列的前n项和”(学生相互合作,探讨沟通,老师巡察课堂,并请学生上台板演。)注:学生已有上面问题的处理阅历,确定有不少学生会想到“错位相减法”,老师可放手让学生探究。将“等比数列的前n项和”两边同时乘以公比“等比数列的前n项和”后会得到“等比数列的前n项和”,两个等式相减后,哪些项被消去,还剩下哪些项,剩下项的符号有没有变更?这些都是用错位相减法求等比数列前“等比数列的前n项和”项和的关键所在,让学生先思索,再探讨,最终师在突出强调,加深印象。两式作差得到“等比数列的前n项和”时,确定会有学生干脆得到“等比数列的前n项和”,不忙揭露错误,后面再反馈这个易错点,从而驾驭公式的本质。:在老师的指导下,让学生从特别到一般,从已知到未知,步步深化,让学生自己探究公式,从而体验到学习的成就感。增加学习数学的爱好和学好数学的信念。问题8:由 “等比数列的前n项和” 得 “等比数列的前n项和”对不对呢?这里的“等比数列的前n项和”能不能等于1呀?等比数列中的公比能不能为1?那么“等比数列的前n项和”时是什么数列?此时“等比数列的前n项和”?你能归纳出等比数列的前n项和公式吗? (这里引导学生对“等比数列的前n项和” 进行分类探讨,得出公式,同时为后面的例题教学打下基础。)再次追问:结合等比数列的通项公式“等比数列的前n项和” ,如何把“等比数列的前n项和” 用“等比数列的前n项和” 、“等比数列的前n项和” 、“等比数列的前n项和” 表示出来?(引导学生得出公式的另一形式)公式:“等比数列的前n项和”注:公式的理解知三求二:n q a1 an Sn ;n的含义:项数(通项公式是qn1);q的含义:公比(留意q=1,分类探讨);错位相减法:乘公比(作用是构造很多相同项)后错开一项后再减。:通过反问学生归纳,一方面使学生加深对学问的相识,完善学问结构,另一方面使学生由简洁地仿照和接受,变为对学问的主动相识,从而进一步提高分析、类比和综合的实力。这一环节特别重要,尽管仅仅几句话,然而却有画龙点睛之妙用。(四)探讨沟通,延长拓展问题9: 探究等比数列前n项和公式,还有其它方法吗?“等比数列的前n项和”(学生探讨沟通,老师指导。依学生的认知水平可能会有以下几种方法)(1)错位相减法“等比数列的前n项和”(2)提出公比q“等比数列的前n项和”(3)累加法:以疑导思,激发学生的探究欲望,营造一个让学生主动视察、思索、探讨的氛围. 这有特别重要的探讨价值,是探讨性学习和课外拓展的极佳资源,它源于课本,又高于课本,对学生的思维发展有促进作用.(五) 应用公式,深化理解例1:在等比数列 an 中,(1)已知a13,q2,n6,求Sn;(2)已知a1=8,q=1/2,an =1/2,求Sn;(3)已知a1=1.5,a4=96,求q与S4;(4)已知a1=2,S326,求q与a3。:初步应用公式,理解等比数列的基本量也可“知三求二”,体会方程思想。例2:等比数列 an 中,已知a33/2,S39/2,求a1与q。:留意公式中的分类探讨思想。例3:求数列n+ 的前n项和。:将未知问题转化为已知问题,进一步体会等比数列前n项和公式的应用。练习1:求等比数列“等比数列的前n项和”前8项和;练习2:a3= ,S9= ,求a1和q;练习3:求数列n+an的前n项和。(先由学生独立求解,然后抽学生板演,老师巡察、指导,讲评学生完成状况,找寻学生中的闪光点,赐予适时的表扬。):通过练习,深化相识,增加思维的梯度的同时,提高学生的模式识别实力,渗透转化思想(六)总结归纳,加深理解问题10:这节课你有什么收获?学到了哪些学问和方法?:以问题的形式出现,引导学生回顾公式、推导方法,激励学生主动回答,然后老师再从学问点及数学思想方法等方面总结。以此培育学生的口头表达实力,归纳概括实力。(学生小结归纳,不足之处老师补充说明。)1公式:等比数列前n项和当q1时,Sn= =当q=1时, Sn=na12方法:错位相减法(乘以公比)3思想:分类探讨(公式选择)(七)故事结束,首尾呼应最终我们回到故事中的问题,可以计算出国王奖赏的小麦约为1.84×1019粒,大约7000亿吨,用这么多小麦能从地球到太阳铺设一条宽10米、厚8米的大道,大约是全世界一年粮食产量的459倍,明显国王兑现不了他的承诺了。:把引入课题时的悬念赐予释疑,有助于学生克服疲乏、接着主动思维。(八)课后作业,分层练习(1)阅读本节内容,预习下一节内容;(2) 书面作业:习题P30 8 .10;(3)拓展作业:求和:“等比数列的前n项和”:出选作题的目的是留意分层教学和因材施教,让学有余力的学生有思索的空间。本文来源:网络收集与整理,如有侵权,请联系作者删除,谢谢!第30页 共30页第 30 页 共 30 页第 30 页 共 30 页第 30 页 共 30 页第 30 页 共 30 页第 30 页 共 30 页第 30 页 共 30 页第 30 页 共 30 页第 30 页 共 30 页第 30 页 共 30 页第 30 页 共 30 页