欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    初三数学上学期期末复习大礼包-学生版.docx

    • 资源ID:4216461       资源大小:7.30MB        全文页数:25页
    • 资源格式: DOCX        下载积分:19金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要19金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    初三数学上学期期末复习大礼包-学生版.docx

    科目:数学 期末复习大礼包模块一:圆一垂径定理1.垂直于弦的直径平分这条弦,并且平分这条弦所对的弧。注意:条件中的“弦”可以是直径;结论中的“平分弧”指平分弦所对的劣弧、优弧。2.平分弦(不是直径)的直径垂直于这条弦,且平分弦所对的弧垂径定理的实质可以理解为:(1)直径;(2)垂直于弦;(3)平分弦; 知二得三(4)平分弦所对的劣弧;(5)平分弦所对的优弧二 圆周角定理1.在同圆或等圆中,同弧或等弧所对的圆周角相等,圆周角等于该弧所对的圆心角的一半2.直径所对的圆周角是直角,的圆周角所对的弦是直径;三圆的内接四边形及性质1.在圆内,四边形的四个顶点均在同一个圆上的四边形叫做圆内接四边形;2.圆内接四边形的对角互补;3.圆内接四边形的任意一个外角等于它的内对角(就是和它相邻的内角的对角)4.三角形外接圆的圆心是三条边垂直平分线的交点,直角三角形外接圆圆心在斜边的中点;5.三角形的内切圆的圆心是三条角平分线的交点四与圆的位置关系1.点与圆的位置关系 若的半径为,点到圆心的距离为,那么:(1)点在圆内:(2)点在圆上:(3)点在圆外: 判断点与圆的位置关系通过点到圆心的距离与半径去进行比较2.直线与圆的位置关系的判定如果的半径为,圆心到直线的距离为,那么直线与相交 直线与相切 直线与相离 判断直线与圆的位置关系通过圆心到直线的距离与半径去进行比较3. 切线的性质:(1) 切线与圆有惟一的公共点;(2)圆心到切线的距离等于半径;(3)切线垂直于经过切点的半径.4. 切线长定理1. 从圆外一点引圆的两条切线,它们的切线长相等,这点和圆心的连线平分两条切线的夹角.五与圆相关的计算1. 弧长计算公式:2扇形面积计算公式:3. 圆锥与侧面展开扇形的关系:、扇形的半径是圆锥侧面的母线,弧长是圆锥底面圆的周长,圆锥体侧面积公式:实战演习:1. 如图,沿凸多边形的外侧(圆与边相切)作无滑动的滚动假设的周长是凸多边形的周长的一半,那么当回到出发点时,它自身滚动的圈数为()A B C D2. 如图,在平面直角坐标系中,以点为圆心、为半径的上有一动点,连接,若点为的中点,连接,则的最小值为_.3.如图,点在上,半径于点,则图中阴影部分的面积等于 (结果保留)4. 如图,为半圆的直径,交圆于,为延长线上一动点,为中点,交半径于,连下列结论:(1);(2);(3);(4)为定值其中正确结论是 5.如图,为的直径,点在上,于,现将沿翻折得到,交于点,连接交于点(1)求证:与相切;(2)若,连接,求长6.如图,正方形中,是边的中点,点是正方形内一动点,连接,将线段绕点逆时针旋转得,连接(1)求证:;(2)若三点共线,连接,求线段的长(3)求线段长的最小值模块二:相似1.斜A型,斜X型1)常见的斜型有如下三种情形,如下图,已知,则由公共角得,; 斜型 斜型 有公共边的斜型 斜型同一直线上的边满足公式:;(共直线的线段乘积相等)有公共边的斜A型:ACDABC,则;结论:,即公共边的平方等于公共角邻边之积; 2)常见的斜型如下:已知,则由对顶角得, 2.射影定理:在有公共边斜A型中,当CDAB时:ACDABCCBD则:;口诀: “柱子的平方等于影子的乘积” 3.一线三等角相似模型: (等角为锐角) (等角为直角) (等角为钝角)一条直线上有3个相等的角,其中两个角有公共边且另一角的顶点落在公共边上实战演习:1.如图,中,于,于,连接,若,则的长为()A B C D2.如图,在正方形中,是对角线与的交点,是边上的动点(点不与,重合),与交于点,连接下列五个结论:;若,则的最小值是,其中正确结论的个数是()A B C D3.如图,在中,正方形的四个顶点在三角形的边上,已知,则正方形的边长等于 4.如图,在矩形中,为边的中点,将绕点顺时针旋转,点的对应点为,点的对应点为,过点作交于点,连接交于点,现有下列结论:; ; ; 点为的外心其中正确的有_5.如图,正方形的边长为,对角线相交于点,是的中点,连接,过点作于点,交于点,则的长为 6. 如图,点是正方形内的一点,若(),那么的大小是_7.如图,在矩形中,动点满足,则点到两点距离之和的最小值为_8.如图,中,是边上的点,在边上,交于,则_. 9.如图,在中,点分别在上,且(1)求证:;(2)若,求的长10.【图形定义】用一条直线去截一个多边形,如果截得的一个图形与原多边形相似,那么称这条直线是这个多边形的特征线【概念理解】如图1,在中,过点作一条直线交于点,若直线是的特征线,求的度数;【问题探究】如图2,在矩形中,是对角线,作,垂足为,的延长线交于点,过点作直线,垂足为,则直线是矩形的特征线吗?请说明你的理由11.如图,中,为斜边上的高,为边上一点(不与重合),过点作交于,连接交于点(1)求证:;(2)若,试用含的式子表示;(3)在(2)的条件下,若为等腰三角形,请直接写出的长12.已知,如图,是的直径,是弦,是弧的中点,连接并延长与的延长线相交于点,垂足为,交与点,垂足为,求(1)和的长;(2)的值13.如图,等腰内接于,弦平分,交于点,过点作的平行线分别交于点(1)求证:;(2)若,求的值14.如图,已知是的直径,是上一点,的平分线交于点,交的切线于点,过点作,交的延长线于点(1)求证:是的切线;(2)若,求的值15.如图,是的直径,平分,交于点,过点的直线,垂足为,为半径上一点,点分别在矩形的边和上(1)求证:直线是的切线;(2)若,求的值16.如图,在中,以为直径的交于点,是的中点,交于点(1)若,求弧的长;(2)判断直线与的位置关系,并说明理由;(3)求证:17.如图1,以点为圆心,半径为的圆交轴于两点,交轴于两点,点为弧上的一动点,延长交轴于点;连接,交于点(1)若点为的中点,求的长;(2)求的值;(3)如图2,过点作交于点,当点在弧上运动时,试问的值是否保持不变;若不变,试证明,求出它的值;若发生变化,请说明理由18.如图,四边形内接于,是的直径,和相交于点,且(1)求证:;(2)分别延长交于点,过点作交的延长线于点,若,求的长模块三:反比例函数1反比例函数定义:一般地,形如(k是常数,且)的函数,叫做反比例函数2解析式:,变形:,;3图象:,图象在第一、第三象限;,图象在第二、第四象限;4增减性:,在每个象限内,y随x的增大而减小; ,在每个象限内,y随x的增大而增大;5对称性:函数图象关于原点中心对称1.如图,点在双曲线上,点在双曲线上,且轴,在轴上,若四边形为平行四边形,则它的面积为()A B C D2.如图,已知点和点,点在反比例函数的图象上,作射线,再将射线绕点按逆时针方向旋转,交反比例函数图象于点,则点的坐标为 3.已知直线与轴、轴分别交于两点,与反比例函数()的图象交于两点,若,则的值为()A B C D4.如图,等腰三角形的底边在轴正半轴上,点在第一象限,延长交轴负半轴于点,延长到点,使,双曲线()的图象过点若的面积为,则的值为_5.正方形的顶点在反比例函数的图象上,顶点分别在轴、轴的正半轴上,再在其右侧作正方形,顶点在反比函数的图象上,顶点在轴的正半轴上,则点的坐标为_. 模块四:锐角三角函数1直角三角形中:角的关系:两个锐角互余边的关系:角与边的关系:三角函数2.三角函数的定义:对边邻边正弦(对/斜)余弦(邻/斜)正切(对/邻) 注:是的缩写,是的缩写,是的缩写;一个角的三角函数是一个比值,没有单位;三角函数值是一个角内在的属性,和角在什么地方无关;只是在直角三角形中,这个角的三角函数值得到外显;,都是一个完整的符号,单独的“”没有意义其中前面的“”一般省略不写1.如图,某数学活动小组为测量学校旗杆的高度,沿旗杆正前方米处的点出发,沿斜面坡度的斜坡前进米到达点,在点处安置测角仪,测得旗杆顶部的仰角为,量得仪器的高为米已知在同一平面内,求旗杆的高度(参考数据:计算结果保留根号)2.台风是形成于热带海洋上的强大而深厚的热带气旋,主要发生在至月,我市也是遭受台风自然灾害较为频繁的地区山坡上有一棵与水平面垂直的大树,一场台风过后,大树被刮倾斜后折断倒在山坡上,树的顶部恰好接触到坡面(如图所示)已知山坡的坡角,量得树干倾斜角,大树被折断部分和坡面所成的角,(1)求的度数;(2)求这棵大树折点到坡面的距离(结果精确到个位,参考数据:)模块五:二次函数1.对于抛物线,系数a、b、c的影响:(1)对称轴:左同右异。a、b同号,对称轴在y轴左侧;a、b异号,对称轴在y轴右侧.(2) 抛物线与x轴交点个数:,图象与x轴有2个交点;,图象与x轴有1个交点;,图象与x轴没有交点.a、c异号,抛物线与x轴一定有两个交点,且分别在y轴的两侧。 2平移规律:“上+下,左+右”3.二次函数图象的对称变换二次函数图象对称一般有三种情况,可以用一般式或顶点式表达1关于轴对称关于轴对称后,得到的解析式是; 关于轴对称后,得到的解析式是;2关于轴对称关于轴对称后,得到的解析式是; 关于轴对称后,得到的解析式是;3关于原点对称关于原点对称后,得到的解析式是;关于原点对称后,得到的解析式是4.二次函数与方程不等式的关系1二次函数与轴交点的横坐标是一元二次方程的根当时,图象与x轴交于两点,其中的,是一元二次方程的两根;当时,图象与轴只有一个交点;当时,图象与轴没有交点;2直线与抛物线交点的横坐标是方程的解;利用数形结合判断方程解的个数;利用联立方程求解交点坐标;3直线、抛物线的交点横坐标是方程的解5.二次函数与几何综合1三角形面积: ;图中PE为铅垂高,OB为水平宽;2求面积相等或成倍分关系:相等:做双轨平行线,注意共有两条平行线;倍分关系:根据截距找对应的平行线和交点,一般为中点或三等分点;实战演习:1. 已知抛物线具有如下性质:该抛物线上任意一点到定点的距离与到轴的距离始终相等,如图,点的坐标为,是抛物线上一个动点,则周长的最小值是()A B C D2. 若抛物线与直线的两交点横坐标分别为,则代数式的值为 3.平面直角坐标系中,已知抛物线为常数(1)若抛物线经过点,求的值;(2)若抛物线经过点和点,且,求的取值范围;(3)若将抛物线向右平移个单位长度得到新抛物线,当时,新抛物线对应的函数有最小值,求的值4.已知,抛物线与轴交于、两点,与轴交于点,抛物线的对称轴是直线,为抛物线的顶点,点在轴点的上方,且(1)求抛物线的解析式及顶点的坐标;(2)求证:直线是外接圆的切线;(3)在直线上方的抛物线上找一点,使,求点的坐标;(4)在坐标轴上找一点,使以点为顶点的三角形与相似,直接写出点的坐标5.如图,二次函数的图象与轴交于两点,与轴交于点,点在函数图象上, 轴,且,直线是抛物线的对称轴,是抛物线的顶点(1)求的值;(2)如图,连接,线段上的点关于直线的对称点恰好在线段上,求点的坐标;(3)如图,动点在线段上,过点作轴的垂线分别与交于点,与抛物线交于点试问:抛物线上是否存在点,使得与的面积相等,且线段的长度最小?如果存在,求出点的坐标;如果不存在,说明理由6.如图,在平面直角坐标系中,抛物线交轴于两点(点在点的左侧),将该抛物线位于轴上方曲线记作,将该抛物线位于轴下方部分沿轴翻折,翻折后所得曲线记作,曲线交轴于点C,连接(1)求曲线所在抛物线相应的函数表达式;(2)求外接圆的半径;(3)点为曲线或曲线上的一动点,点为轴上的一个动点,若以点为顶点的四边形是平行四边形,求点的坐标7.如图,已知二次函数的图象与轴交于点,点,与轴交于点(1)求二次函数的表达式;(2)连接,若点在线段上运动(不与点重合),过点作,交于点,当面积最大时,求点的坐标;(3)连接,在(2)的结论下,求与的数量关系8. 如图1,四边形是矩形,点的坐标为,点的坐标为,点从点出发,沿以每秒个单位长度的速度向点出发,同时点从点出发,沿以每秒个单位长度的速度向点运动,当点与点重合时运动停止设运动时间为秒(1)当时,线段的中点坐标为 ;(2)当与相似时,求的值;(3)当时,抛物线经过两点,与轴交于点,抛物线的顶点为,如图2所示,问该抛物线上是否存在点,使?若存在,求出所有满足条件的的坐标;若不存在,说明理由25

    注意事项

    本文(初三数学上学期期末复习大礼包-学生版.docx)为本站会员(小****库)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开