232(1-3)双曲线的简单几何性质.ppt
2.3.22.3.2 双曲线简单的几何性质双曲线简单的几何性质 (一一)定义定义定义定义图象图象图象图象方程方程方程方程焦点焦点焦点焦点a.b.c a.b.c 的关系的关系的关系的关系|MF1|-|MF2|=2a(2aa0e 1e是表示双曲线开口大小的一个量,e越大开口越大(1)定义:)定义:(2)e e的范围的范围:(3)e e的含义:的含义:(4)等轴双曲线的离心率等轴双曲线的离心率e=?(5)xyo-aab-b(1)范围)范围:(2)对称性)对称性:关于关于x轴、轴、y轴、原点都对称轴、原点都对称(3)顶点)顶点:(0,-a)、(0,a)(4)渐近线)渐近线:(5)离心率)离心率:小小 结结或或关于关于坐标坐标轴和轴和原点原点都对都对称称性性质质双双曲曲线线范围范围对称对称 性性 顶点顶点 渐近渐近 线线离心离心 率率图象图象例例1:求双曲线求双曲线的实半轴长的实半轴长,虚半轴长虚半轴长,焦点坐标焦点坐标,离心率离心率.渐近线方程。渐近线方程。解:把方程化为标准方程解:把方程化为标准方程可得可得:实半轴长实半轴长a=4虚半轴长虚半轴长b=3半焦距半焦距c=焦点坐标是焦点坐标是(0,-5),(0,5)离心率离心率:渐近线方程渐近线方程:14416922=-xy1342222=-xy53422=+45=ace例题讲解例题讲解 例例2:1、若双曲线的渐近线方程为、若双曲线的渐近线方程为 则双曲线则双曲线的离心率为的离心率为 。课堂练习课堂练习e=5/3或或5/4解:解:当焦点在当焦点在x轴上时轴上时渐近线方程为渐近线方程为1、若双曲线的渐近线方程为、若双曲线的渐近线方程为 则双曲线则双曲线的离心率为的离心率为 。课堂练习课堂练习e=5/3或或5/4当焦点在当焦点在y轴上时轴上时渐近线方程为渐近线方程为2、若双曲线的离心率为、若双曲线的离心率为2,则两条渐近线的夹角,则两条渐近线的夹角为为 。课堂练习课堂练习60解:解:当焦点在当焦点在x轴上时轴上时渐近线方程为渐近线方程为两条渐近线的夹角为两条渐近线的夹角为 602、若双曲线的离心率为、若双曲线的离心率为2,则两条渐近线的夹角,则两条渐近线的夹角为为 。课堂练习课堂练习60解:解:当焦点在当焦点在y轴上时轴上时渐近线方程为渐近线方程为两条渐近线的夹角为两条渐近线的夹角为 601、若双曲线的渐近线方程为、若双曲线的渐近线方程为 则双曲线则双曲线的离心率为的离心率为 。2、若双曲线的离心率为、若双曲线的离心率为2,则两条渐近线的夹角,则两条渐近线的夹角为为 。课堂练习课堂练习e=5/3或或5/460例例3:求下列双曲线的标准方程:求下列双曲线的标准方程:例题讲解例题讲解 法二:法二:巧设方程巧设方程,运用待定系数法运用待定系数法.设双曲线方程为设双曲线方程为 ,法二:法二:设双曲线方程为设双曲线方程为 双曲线方程为双曲线方程为 ,解之得解之得k=4,1、“共渐近线共渐近线”的双曲线的应的双曲线的应用用0表示焦点在表示焦点在x轴上的双曲线;轴上的双曲线;0表示焦点在表示焦点在x轴上的双曲线;轴上的双曲线;a0),求点,求点M的轨迹的轨迹.M解:解:设点设点M(x,y)到到l的距离为的距离为d,则,则即即化简得化简得(c2a2)x2 a2y2=a2(c2 a2)设设c2a2=b2,(a0,b0)故点故点M的轨迹为实轴、虚轴长分别为的轨迹为实轴、虚轴长分别为2a、2b的双曲线的双曲线.b2x2a2y2=a2b2即即就可化为就可化为:M点点M的轨迹也包括双的轨迹也包括双曲线的左支曲线的左支.一、第二定义一、第二定义 双曲线的第二定义双曲线的第二定义 平面内,若平面内,若定点定点F不在定直线不在定直线l上,则到定点上,则到定点F的的距离与到定直线距离与到定直线l的距离比为常数的距离比为常数e(e1)的点的轨迹是的点的轨迹是双曲线双曲线。定点定点F是是双曲线的焦点双曲线的焦点,定直线叫做,定直线叫做双曲线双曲线的准线的准线,常数,常数e是是双曲线的离心率双曲线的离心率.对于双曲线对于双曲线是相应于右焦点是相应于右焦点F(c,0)的的右准线右准线类似于椭圆类似于椭圆是相应于左焦点是相应于左焦点F(-c,0)的的左准线左准线xyoFlMFl点点M到左焦点与左准线的距到左焦点与左准线的距离之比也满足第二定义离之比也满足第二定义.(x0,y0)MF1F2双曲线、双曲线、焦半径公式焦半径公式左左加,右减加,右减想一想:想一想:中心在原中心在原点,焦点在点,焦点在y轴上轴上的双曲线的准线的双曲线的准线方程是怎样的?方程是怎样的?xyoF相应于上焦点相应于上焦点F(c,0)的是的是上准线上准线相应于下焦点相应于下焦点F(-c,0)的是的是下准线下准线F例例2 2、点、点M M(x,yx,y)与定点与定点F F(5,05,0),),的距离的距离和它到定直线:和它到定直线:的距离的比是常的距离的比是常数数 ,求点求点M M的轨迹的轨迹.y0d解:解:例例3、已知双曲线已知双曲线F1、F2是它的左、右焦点是它的左、右焦点.设点设点A(9,2),在曲线上求点在曲线上求点M,使,使 的值最小的值最小,并求这个最小值并求这个最小值.xyoF2MA由已知:由已知:解:解:a=4,b=3,c=5,双曲线的右准线为双曲线的右准线为l:作作MNl,AA1l,垂足分别是垂足分别是N,A1,NA1当且仅当当且仅当M是是 AA1与双曲线的交点时取等号与双曲线的交点时取等号,令令y=2,解得解得:归纳总结归纳总结1.双曲线双曲线的第二定义的第二定义 平面内,若平面内,若定点定点F不在定直线不在定直线l上,则到定点上,则到定点F的的距离与到定直线距离与到定直线l的距离比为常数的距离比为常数e(e1)的点的轨迹是的点的轨迹是双曲线双曲线。定点定点F是是双曲线的焦点双曲线的焦点,定直线叫做,定直线叫做双曲线双曲线的准线的准线,常数,常数e是是双曲线的离心率双曲线的离心率。2.双曲线双曲线的准线方程的准线方程对于双曲线对于双曲线准线为准线为对于双曲线对于双曲线准线为准线为注意注意:把双曲线和椭圆的知识相类比把双曲线和椭圆的知识相类比.椭圆与直线的位置关系及判断方法椭圆与直线的位置关系及判断方法判断方法判断方法0(1)联立方程组)联立方程组(2)消去一个未知数)消去一个未知数(3)复习:相离相切相交二、二、直线与双曲线的位置关系直线与双曲线的位置关系1)位置关系种类位置关系种类XYO种类种类:相离相离;相切相切;相交相交(0个交点,一个交点,个交点,一个交点,一个交点或一个交点或两个交点两个交点)2)2)位置关系与交点个数位置关系与交点个数XYOXYO相离相离:0:0个交点个交点相交相交:一个交点一个交点相交相交:两个交点两个交点相切相切:一个交点一个交点3)判断直线与双曲线位置关系的操作程序判断直线与双曲线位置关系的操作程序把直线方程代入双曲线方程把直线方程代入双曲线方程得到一元一次方程得到一元一次方程得到一元二次方程得到一元二次方程直线与双曲线的直线与双曲线的渐进线平行渐进线平行相交(一个交点)相交(一个交点)计计 算算 判判 别别 式式0=00 直线与双曲线相交(两个交点)直线与双曲线相交(两个交点)=0 直线与双曲线相切直线与双曲线相切 0 直线与双曲线相离直线与双曲线相离相切一点相切一点:=0相相 离离:0 注注:相交两点相交两点:0 同侧:同侧:0 异侧异侧:0 一点一点:直线与渐进线平行直线与渐进线平行特别注意直线与双曲线的特别注意直线与双曲线的位置关系中:位置关系中:一解不一定相切,相交不一定一解不一定相切,相交不一定两解,两解不一定同支两解,两解不一定同支创新设计创新设计 P33创新设计创新设计 P33例例.已知直线已知直线y=kx-1与双曲线与双曲线x2-y2=4,试讨论实数试讨论实数k的取的取值范围值范围,使直线与双曲线使直线与双曲线(1)没有公共点没有公共点;(1)k 或k ;解:由题,上方程没有实数根由题,上方程没有实数根例例.已知直线已知直线y=kx-1与双曲线与双曲线x2-y2=4,试讨论实数试讨论实数k的取的取值范围值范围,使直线与双曲线使直线与双曲线 (2)有两个公共点有两个公共点;(2)k ;解:由题,上方程有两个不相等的实数根由题,上方程有两个不相等的实数根例例.已知直线已知直线y=kx-1与双曲线与双曲线x2-y2=4,试讨论实数试讨论实数k的取的取值范围值范围,使直线与双曲线使直线与双曲线(3)只有一个公共点只有一个公共点;(3)k=1,或,或k=;解:解:当直线当直线y=kx-1平行渐近线时平行渐近线时渐近线:渐近线:当直线当直线y=kx-1不不平行渐近线时平行渐近线时由题,上方程有两个相等的实数根由题,上方程有两个相等的实数根例例.已知直线已知直线y=kx-1与双曲线与双曲线x2-y2=4,试讨论实数试讨论实数k的取的取值范围值范围,使直线与双曲线使直线与双曲线 (4)交于异支两点;交于异支两点;(4)-1k1;解:解:1k1由题,上方程有一正根和一负根由题,上方程有一正根和一负根例例.已知直线已知直线y=kx-1与双曲线与双曲线x2-y2=4,试讨论实数试讨论实数k的取的取值范围值范围,使直线与双曲线使直线与双曲线(5)与左支交于两点与左支交于两点.解:解:由题,上方程有两个不相等的负根由题,上方程有两个不相等的负根例例.已知直线已知直线y=kx-1与双曲线与双曲线x2-y2=4,试讨论实数试讨论实数k的取的取值范围值范围,使直线与双曲线使直线与双曲线(1)没有公共点没有公共点;(2)有两个公共点有两个公共点;(3)只有一个公共点只有一个公共点;(4)交于异支两点;交于异支两点;(5)与左支交于两点与左支交于两点.(3)k=1,或,或k=;(4)-1k1;(1)k 或k ;(2)k ;1.过点过点P(1,1)与双曲线与双曲线 只有只有共有共有_条条.变题变题:将点将点P(1,1)改为改为1.A(3,4)2.B(3,0)3.C(4,0)4.D(0,0).答案又是怎样的答案又是怎样的?41.两条两条;2.三条三条;3.两条两条;4.零条零条.交点的交点的一个一个直线直线XYO(1,1)。2.双曲线双曲线x2-y2=1的左焦点为的左焦点为F,点点P为左支下半支上任意一点为左支下半支上任意一点(异于顶点异于顶点),则直线则直线PF的斜率的变化范围是的斜率的变化范围是_3.过原点与双曲线过原点与双曲线 交于两点的直线斜率的交于两点的直线斜率的取值范围是取值范围是 例例4、如图,过双曲线、如图,过双曲线 的右焦点的右焦点倾斜角为倾斜角为 的直线交双曲线于的直线交双曲线于A,B两点,求两点,求|AB|。三、三、弦长问题弦长问题例例4、如图,过双曲线、如图,过双曲线 的右焦点的右焦点倾斜角为倾斜角为 的直线交双曲线于的直线交双曲线于A,B两点,求两点,求|AB|。三、三、弦长问题弦长问题解:解:A(x1,y1),B(x2,y2)例例4、如图,过双曲线、如图,过双曲线 的右焦点的右焦点倾斜角为倾斜角为 的直线交双曲线于的直线交双曲线于A,B两点,求两点,求|AB|。三、三、弦长问题弦长问题解:解:A(x1,y1),B(x2,y2)A,B在双曲线的两支上,在双曲线的两支上,设设A在左支,在左支,B在右支在右支例例2、过双曲线、过双曲线 的右焦点的右焦点 倾斜角为倾斜角为 的直线交双曲线于的直线交双曲线于A,B两点,求两点,求|AB|。相交弦长问题相交弦长问题特殊:如果直线过焦点,我们可以利用特殊:如果直线过焦点,我们可以利用 焦半径公式焦半径公式来求解。来求解。解解韦达定理与点差法韦达定理与点差法例例.已知双曲线方程为已知双曲线方程为3x2-y2=3,求:求:(1)以以2为斜率的弦的中点轨迹;为斜率的弦的中点轨迹;(2)过定点过定点B(2,1)的弦的中点轨迹;的弦的中点轨迹;(3)以定点以定点B(2,1)为中点的弦所在为中点的弦所在的直线方程的直线方程.(4)以定点以定点(1,1)为中点的弦存在为中点的弦存在吗?说明理由;吗?说明理由;韦达定理与点差法韦达定理与点差法例例.已知双曲线方程为已知双曲线方程为3x2-y2=3,求:求:(1)以以2为斜率的弦的中点轨迹;为斜率的弦的中点轨迹;解:法一解:法一 韦达定理韦达定理韦达定理与点差法韦达定理与点差法例例.已知双曲线方程为已知双曲线方程为3x2-y2=3,求:求:(1)以以2为斜率的弦的中点轨迹;为斜率的弦的中点轨迹;解:法二解:法二 点差法点差法例例.已知双曲线方程为已知双曲线方程为3x2-y2=3,求:求:(2)过定点过定点B(2,1)的弦的中点轨迹;的弦的中点轨迹;解:法一解:法一 韦达定理韦达定理设设弦弦PQ中点为中点为MP(x1,y1),Q(x2,y2)M(x,y)当当PQ斜率斜率k存在时存在时当当PQ斜率不存在时斜率不存在时PQ:x=2y=3或或-3P(2,3),Q(2,-3)M(2,0)满足满足所以所以例例.已知双曲线方程为已知双曲线方程为3x2-y2=3,求:求:(2)过定点过定点B(2,1)的弦的中点轨迹;的弦的中点轨迹;解:法二解:法二 点差法点差法设设弦弦PQ中点为中点为MP(x1,y1),Q(x2,y2)M(x,y)例例.已知双曲线方程为已知双曲线方程为3x2-y2=3,求:求:(3)以定点以定点B(2,1)为中点的弦所在的直线方程为中点的弦所在的直线方程.解:法一解:法一 韦达定理韦达定理P(x1,y1),Q(x2,y2)B(2,1)设设弦弦PQ中点为中点为B由题由题PQ斜率斜率k存在存在例例.已知双曲线方程为已知双曲线方程为3x2-y2=3,求:求:(3)以定点以定点B(2,1)为中点的弦所在的直线方程为中点的弦所在的直线方程.解:法二解:法二 点差法点差法P(x1,y1),Q(x2,y2)B(2,1)设设弦弦PQ中点为中点为B由题由题PQ斜率斜率k存在存在例例.已知双曲线方程为已知双曲线方程为3x2-y2=3,求:求:(3)以定点以定点B(2,1)为中点的弦所在的直线方程为中点的弦所在的直线方程.解:法三解:法三 P(x,y),Q(4-x,2-y)设设弦弦PQ中点为中点为BP,Q在双曲线上在双曲线上3x2-y2=3 3(4-x)2-(2-y)2=3 (2)-(2)得得24x-4y-44=03x-y-11=0例例.已知双曲线方程为已知双曲线方程为3x2-y2=3,求:求:(4)以定点以定点(1,1)为中点的弦存在吗?说明理由;为中点的弦存在吗?说明理由;解:法一解:法一 韦达定理韦达定理设设弦弦PQ中点为中点为M(1,1)由题由题PQ斜率斜率k存在存在不满足不满足(4),所以不存在),所以不存在P(x1,y1),Q(x2,y2)例例.已知双曲线方程为已知双曲线方程为3x2-y2=3,求:求:(4)以定点以定点(1,1)为中点的弦存在吗?说明理由;为中点的弦存在吗?说明理由;解解 法二法二 点差法点差法设设弦弦PQ中点为中点为M(1,1)P(x1,y1),Q(x2,y2)由题由题PQ斜率斜率k存在存在所以不存在所以不存在1.位置判定位置判定2.弦长公式弦长公式3.中点问题中点问题4.垂直与对称垂直与对称5.设而不求设而不求(韦达定理、点差法韦达定理、点差法)小结:小结:拓展延伸拓展延伸解:解:拓展延伸拓展延伸解:解:拓展延伸拓展延伸3、设双曲线、设双曲线C:与直线与直线相交于两个不同的点相交于两个不同的点A、B。(1)求双曲线求双曲线C的离心率的离心率e的取值范围。的取值范围。(2)设直线)设直线l与与y轴的交点为轴的交点为P,且且 求求a的值。的值。创新设计创新设计 P35创新设计创新设计 P34创新设计创新设计 P34创新设计创新设计 P34创新设计创新设计 P34创新设计创新设计 P34创新设计创新设计 P34创新设计创新设计 P35创新设计创新设计 P354、由双曲线、由双曲线 上的一点上的一点P与左、右与左、右两焦点两焦点 构成构成 ,求,求 的内切圆与的内切圆与边边 的切点坐标。的切点坐标。说明:说明:双曲线上一点双曲线上一点P与双曲线的两个焦点与双曲线的两个焦点 构成构成的三角形称之为的三角形称之为焦点三角形焦点三角形,其中,其中 和和 为三角形的三边。解决与这个三角形有关的问题,要充分为三角形的三边。解决与这个三角形有关的问题,要充分利用双曲线的定义和三角形的边角关系、正弦定理、余弦利用双曲线的定义和三角形的边角关系、正弦定理、余弦定理。定理。(3,0)或(或(-3,0)