2022年多边形的内角和与外角和教学设计 .pdf
-
资源ID:42662946
资源大小:223.76KB
全文页数:7页
- 资源格式: PDF
下载积分:4.3金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2022年多边形的内角和与外角和教学设计 .pdf
多边形的内角和与外角和-教学设计教学目标知识与技能探索多边形的内角和与外角和公式;会应用多边形内角和公式与外角和公式解决简单问题;进一步发展说理能力和简单的推理能力。过程与方法经历探索多边形内角和与外角和公式的过程,通过小组讨论、合作交流得出结论。情感态度价值观通过探索过程进一步体会知识点之间的联系;通过本节的学习进一步体会数学与现实生活的紧密联系。教学重点和难点重点:多边形的内角和与外角和定理。难点:探究多边形内角和与外角和的过程。教学方法启发引导、合作探究课时安排名师资料总结-精品资料欢迎下载-名师精心整理-第 1 页,共 7 页 -1 课时教具学具准备投影仪、三角板教学过程设计(一)激情导入,引入新课。我们已经研究了三角形和平行四边形,但是,在日常生活中,我们还会遇到边数更多的平面几何图形。(投影出示图片)1、观察与思考聪明的同学们,你们知道它们包括哪些平面图行吗?对,这些在日常生活中看到的平面图形,就是我们本节要研究的多边形。首先我们来认识多边形。1、布置自学内容。(投影自学导读)2、检查自学效果。(学生填写自学检测)自学检测题1、多边形的定义:在平面内,由的线段相连组成的平面图形叫做多边形 在定义中应注意:不在直线上;相连,二者缺一不可.名师资料总结-精品资料欢迎下载-名师精心整理-第 2 页,共 7 页 -以上两个多边形分别为边形、边形,应分别记为。多边形有凸多边形和凹多边形之分,如图.把多边形的任何一边向两方延长,如果其他各边都在延长所得直线的同一旁,这样的多边形叫做凸多边形(如图(2)图(1)的多边形是凹多边形我们探讨的一般都是凸多边形.2、如果多边形的都相等、也都相等的多边形叫做正多边形。3、认识多边形的边、内角、顶点、对角线写出图(3)中多边形的边、内角、顶点。连结多边形的两个顶点的线段叫做多边形的对角线。补全图(3)的多边形以点 A为端点的对角线。(二)规律探究(1)探索多边形的内角和活动 1:我们已经知道,三角形内角和180,那么,任意一个四边形的内角和是多少度呢?请同学们想想我们怎样利用三角形知识去求得四边形的内角和呢?同学进行交流活动计划:1)六人小组合作,在纸上完成四边形的分割;比比名师资料总结-精品资料欢迎下载-名师精心整理-第 3 页,共 7 页 -看谁的方法多又好。2)各小组交流成果。教师:同学们积极开动脑筋想出了很多方法求四边形的内角和非常好,教师指定运用其中一种方法,并对其他想法加以肯定。活动 2:从多边形的一个顶点出发,可以引多少条对角线?他们将多边形分成多少个三角形?总结多边形内角和,你会得到什么样的结论?三角形(3 边)四边形(4 边)五边形(5 边)六边形(6 边)边数从某顶点出发的对角线条数划分成的三角形个数多边形的内角和3 0 1 11804 1 2 21805 6 n 总结多边形的内角和公式一般的,从 n 边形的一个顶点出发可以引_条对角线,他们将 n 边形分为 _个三角形,n 边形的内角和(n3)名师资料总结-精品资料欢迎下载-名师精心整理-第 4 页,共 7 页 -对应训练1正八边形的内角和为 _.2已知多边形的内角和为900,则这个多边形的边数为_.3一个多边形每个内角的度数是150,则这个多边形的边数是_.(2)探究多边形外角和1.在黑板作出四边形及外角,介绍多边形的外角概念。四边形外角与相邻内角之间有什么关系?四边形内角和是多少?四边形外角和怎么求呢?四边形外角和=4 个平角-内角和=4 180-2 180=360 2.探究 如果将上例中四边形换成n 边(n3),可以得到什么样的结果呢?多边形的边数3 4 5 6 n 多边形的内角与外角的总和3180=540_180多边形的内角和360多边形的外角和360因为 n 边形的一个内角与它的相邻的外角互为_ _,所以可先求出多边形的内角与外角的总和,再减去_ _,就可得到外角和。结论:多边形的外角和=_o注:多边形的外角和与_无关.(三)习题演练名师资料总结-精品资料欢迎下载-名师精心整理-第 5 页,共 7 页 -1.七边形的外角和是_。2.如果一个多边形的内角和等于外角和,那么这个多边形是 _边形。3.如果一个正多边形的一个内角等于120,则这个多边形的边数是_ 4.一个正多边形,其内角比外角大60,求这是几边形。5.一个多边形的内角和与外角和相等,试说明这是几边形。(四)感悟与反思通过这节的探究你有哪些收获,还有哪些疑问?(1、总结本节知识要点。2、方法总结。)(五)课堂效果反馈 -我就是最棒的!1、n 边 形 的 内 角 和 等 于 _,九 边 形 的 内 角 和 等 于_。2、n 边 形 的 外 角 和 等 于 _,九 边 形 的 外 角 和 等 于_。3、一个多边形的外角都等于60,这个多边形是n边形?4、已知一个多边形,它的内角和等于外角和的2 倍,求这个多边形的边数?5、一个正多边形的一个内角比相邻外角大36,求这个正多边形的边数。(六)布置作业1、必做题。课本 86 页习题:1、2.名师资料总结-精品资料欢迎下载-名师精心整理-第 6 页,共 7 页 -2、选做题。通过画图写出四边形、五边形、六边形的对角线条数,并探究归纳 n(n3)边形的对角线条数。板书设计多边形的内角和与外角和一、n 边行的内角和是(n-2)180 (n3)二、任意多边形的外角和是360名师资料总结-精品资料欢迎下载-名师精心整理-第 7 页,共 7 页 -