欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    浙江省温州市2017年中考数学真题试题(含解析1).doc

    • 资源ID:42828534       资源大小:342KB        全文页数:18页
    • 资源格式: DOC        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    浙江省温州市2017年中考数学真题试题(含解析1).doc

    2017年浙江省温州市中考数学试卷一、选择题(共10小题,每小题4分,共40分):16的相反数是()A6B1C0D62某校学生到校方式情况的统计图如图所示,若该校步行到校的学生有100人,则乘公共汽车到校的学生有()A75人B100人C125人D200人3某运动会颁奖台如图所示,它的主视图是()ABCD4下列选项中的整数,及最接近的是()A3B4C5D65温州某企业车间有50名工人,某一天他们生产的机器零件个数统计如下表:零件个数(个)5678人数(人)3152210表中表示零件个数的数据中,众数是()A5个B6个C7个D8个6已知点(1,y1),(4,y2)在一次函数y=3x2的图象上,则y1,y2,0的大小关系是()A0y1y2By10y2Cy1y20Dy20y17如图,一辆小车沿倾斜角为的斜坡向上行驶13米,已知cos=,则小车上升的高度是()A5米B6米C6.5米D12米8我们知道方程x2+2x3=0的解是x1=1,x2=3,现给出另一个方程(2x+3)2+2(2x+3)3=0,它的解是()Ax1=1,x2=3Bx1=1,x2=3Cx1=1,x2=3Dx1=1,x2=39四个全等的直角三角形按图示方式围成正方形ABCD,过各较长直角边的中点作垂线,围成面积为S的小正方形EFGH已知AM为RtABM较长直角边,AM=2EF,则正方形ABCD的面积为()A12SB10SC9SD8S10我们把1,1,2,3,5,8,13,21,这组数称为斐波那契数列,为了进一步研究,依次以这列数为半径作90°圆弧,得到斐波那契螺旋线,然后顺次连结P1P2,P2P3,P3P4,得到螺旋折线(如图),已知点P1(0,1),P2(1,0),P3(0,1),则该折线上的点P9的坐标为()A(6,24)B(6,25)C(5,24)D(5,25)二、填空题(共6小题,每小题5分,共30分):11分解因式:m2+4m= 12数据1,3,5,12,a,其中整数a是这组数据的中位数,则该组数据的平均数是 13已知扇形的面积为3,圆心角为120°,则它的半径为 14甲、乙工程队分别承接了160米、200米的管道铺设任务,已知乙比甲每天多铺设5米,甲、乙完成铺设任务的时间相同,问甲每天铺设多少米?设甲每天铺设x米,根据题意可列出方程: 15如图,矩形OABC的边OA,OC分别在x轴、y轴上,点B在第一象限,点D在边BC上,且AOD=30°,四边形OABD及四边形OABD关于直线OD对称(点A和A,B和B分别对应)若AB=1,反比例函数y=(k0)的图象恰好经过点A,B,则k的值为 16小明家的洗手盆上装有一种抬启式水龙头(如图1),完全开启后,水流路线呈抛物线,把手端点A,出水口B和落水点C恰好在同一直线上,点A至出水管BD的距离为12cm,洗手盆及水龙头的相关数据如图2所示,现用高10.2cm的圆柱型水杯去接水,若水流所在抛物线经过点D和杯子上底面中心E,则点E到洗手盆内侧的距离EH为 cm三、解答题(共8小题,共80分):17(1)计算:2×(3)+(1)2+;(2)化简:(1+a)(1a)+a(a2)18如图,在五边形ABCDE中,BCD=EDC=90°,BC=ED,AC=AD(1)求证:ABCAED;(2)当B=140°时,求BAE的度数19为培养学生数学学习兴趣,某校七年级准备开设“神奇魔方”、“魅力数独”、“数学故事”、“趣题巧解”四门选修课(每位学生必须且只选其中一门)(1)学校对七年级部分学生进行选课调查,得到如图所示的统计图根据该统计图,请估计该校七年级480名学生选“数学故事”的人数(2)学校将选“数学故事”的学生分成人数相等的A,B,C三个班,小聪、小慧都选择了“数学故事”,已知小聪不在A班,求他和小慧被分到同一个班的概率(要求列表或画树状图)20在直角坐标系中,我们把横、纵坐标都为整数的点称为整点,记顶点都是整点的三角形为整点三角形如图,已知整点A(2,3),B(4,4),请在所给网格区域(含边界)上按要求画整点三角形(1)在图1中画一个PAB,使点P的横、纵坐标之和等于点A的横坐标;(2)在图2中画一个PAB,使点P,B横坐标的平方和等于它们纵坐标和的4倍21如图,在ABC中,AC=BC,ACB=90°,O(圆心O在ABC内部)经过B、C两点,交AB于点E,过点E作O的切线交AC于点F延长CO交AB于点G,作EDAC交CG于点D (1)求证:四边形CDEF是平行四边形;(2)若BC=3,tanDEF=2,求BG的值22如图,过抛物线y=x22x上一点A作x轴的平行线,交抛物线于另一点B,交y轴于点C,已知点A的横坐标为2(1)求抛物线的对称轴和点B的坐标;(2)在AB上任取一点P,连结OP,作点C关于直线OP的对称点D;连结BD,求BD的最小值;当点D落在抛物线的对称轴上,且在x轴上方时,求直线PD的函数表达式23小黄准备给长8m,宽6m的长方形客厅铺设瓷砖,现将其划分成一个长方形ABCD区域(阴影部分)和一个环形区域(空白部分),其中区域用甲、乙、丙三种瓷砖铺设,且满足PQAD,如图所示(1)若区域的三种瓷砖均价为300元/m2,面积为S(m2),区域的瓷砖均价为200元/m2,且两区域的瓷砖总价为不超过12000元,求S的最大值;(2)若区域满足AB:BC=2:3,区域四周宽度相等求AB,BC的长;若甲、丙两瓷砖单价之和为300元/m2,乙、丙瓷砖单价之比为5:3,且区域的三种瓷砖总价为4800元,求丙瓷砖单价的取值范围24如图,已知线段AB=2,MNAB于点M,且AM=BM,P是射线MN上一动点,E,D分别是PA,PB的中点,过点A,M,D的圆及BP的另一交点C(点C在线段BD上),连结AC,DE(1)当APB=28°时,求B和的度数;(2)求证:AC=AB(3)在点P的运动过程中当MP=4时,取四边形ACDE一边的两端点和线段MP上一点Q,若以这三点为顶点的三角形是直角三角形,且Q为锐角顶点,求所有满足条件的MQ的值;记AP及圆的另一个交点为F,将点F绕点D旋转90°得到点G,当点G恰好落在MN上时,连结AG,CG,DG,EG,直接写出ACG和DEG的面积之比2017年浙江省温州市中考数学试卷参考答案及试题解析一、选择题(共10小题,每小题4分,共40分):16的相反数是()A6B1C0D6【考点】14:相反数【分析】根据相反数的定义求解即可【解答】解:6的相反数是6,故选:A2某校学生到校方式情况的统计图如图所示,若该校步行到校的学生有100人,则乘公共汽车到校的学生有()A75人B100人C125人D200人【考点】VB:扇形统计图【分析】由扇形统计图可知,步行人数所占比例,再根据统计表中步行人数是100人,即可求出总人数以及乘公共汽车的人数;【解答】解:所有学生人数为 100÷20%=500(人);所以乘公共汽车的学生人数为 500×40%=200(人) 故选D3某运动会颁奖台如图所示,它的主视图是()ABCD【考点】U2:简单组合体的三视图【分析】根据从正面看得到的图形是主视图,可得答案【解答】解:从正面看,故选:C4下列选项中的整数,及最接近的是()A3B4C5D6【考点】2B:估算无理数的大小【分析】依据被开放数越大对应的算术平方根越大进行解答即可【解答】解:161720.25,44.5,及最接近的是4故选:B5温州某企业车间有50名工人,某一天他们生产的机器零件个数统计如下表:零件个数(个)5678人数(人)3152210表中表示零件个数的数据中,众数是()A5个B6个C7个D8个【考点】W5:众数【分析】根据众数的定义,找数据中出现最多的数即可【解答】解:数字7出现了22次,为出现次数最多的数,故众数为7个,故选C6已知点(1,y1),(4,y2)在一次函数y=3x2的图象上,则y1,y2,0的大小关系是()A0y1y2By10y2Cy1y20Dy20y1【考点】F8:一次函数图象上点的坐标特征【分析】根据点的横坐标利用一次函数图象上点的坐标特征,即可求出y1、y2的值,将其及0比较大小后即可得出结论【解答】解:点(1,y1),(4,)在一次函数y=3x2的图象上,y1=5,y2=10,1005,y10y2故选B7如图,一辆小车沿倾斜角为的斜坡向上行驶13米,已知cos=,则小车上升的高度是()A5米B6米C6.5米D12米【考点】T9:解直角三角形的应用坡度坡角问题【分析】在RtABC中,先求出AB,再利用勾股定理求出BC即可【解答】解:如图AC=13,作CBAB,cos=,AB=12,BC=132122=5,小车上升的高度是5m故选A8我们知道方程x2+2x3=0的解是x1=1,x2=3,现给出另一个方程(2x+3)2+2(2x+3)3=0,它的解是()Ax1=1,x2=3Bx1=1,x2=3Cx1=1,x2=3Dx1=1,x2=3【考点】A3:一元二次方程的解【分析】先把方程(2x+3)2+2(2x+3)3=0看作关于2x+3的一元二次方程,利用题中的解得到2x+3=1或2x+3=3,然后解两个一元一次方程即可【解答】解:把方程(2x+3)2+2(2x+3)3=0看作关于2x+3的一元二次方程,所以2x+3=1或2x+3=3,所以x1=1,x2=3故选D9四个全等的直角三角形按图示方式围成正方形ABCD,过各较长直角边的中点作垂线,围成面积为S的小正方形EFGH已知AM为RtABM较长直角边,AM=2EF,则正方形ABCD的面积为()A12SB10SC9SD8S【考点】KR:勾股定理的证明【分析】设AM=2aBM=b则正方形ABCD的面积=4a2+b2,由题意可知EF=(2ab)2(ab)=2ab2a+2b=b,由此即可解决问题【解答】解:设AM=2aBM=b则正方形ABCD的面积=4a2+b2由题意可知EF=(2ab)2(ab)=2ab2a+2b=b,AM=2EF,2a=2b,a=b,正方形EFGH的面积为S,b2=S,正方形ABCD的面积=4a2+b2=9b2=9S,故选C10我们把1,1,2,3,5,8,13,21,这组数称为斐波那契数列,为了进一步研究,依次以这列数为半径作90°圆弧,得到斐波那契螺旋线,然后顺次连结P1P2,P2P3,P3P4,得到螺旋折线(如图),已知点P1(0,1),P2(1,0),P3(0,1),则该折线上的点P9的坐标为()A(6,24)B(6,25)C(5,24)D(5,25)【考点】D2:规律型:点的坐标【分析】观察图象,推出P9的位置,即可解决问题【解答】解:由题意,P5在P2的正上方,推出P9在P6的正上方,且到P6的距离=21+5=26,所以P9的坐标为(6,25),故选B二、填空题(共6小题,每小题5分,共30分):11分解因式:m2+4m=m(m+4)【考点】53:因式分解提公因式法【分析】直接提提取公因式m,进而分解因式得出答案【解答】解:m2+4m=m(m+4)故答案为:m(m+4)12数据1,3,5,12,a,其中整数a是这组数据的中位数,则该组数据的平均数是4.8或5或5.2【考点】W4:中位数;W1:算术平均数【分析】根据中位数的定义确定整数a的值,由平均数的定义即可得出答案【解答】解:数据1,3,5,12,a的中位数是整数a,a=3或a=4或a=5,当a=3时,这组数据的平均数为=4.8,当a=4时,这组数据的平均数为=5,当a=5时,这组数据的平均数为=5.2,故答案为:4.8或5或5.213已知扇形的面积为3,圆心角为120°,则它的半径为3【考点】MO:扇形面积的计算【分析】根据扇形的面积公式,可得答案【解答】解:设半径为r,由题意,得r2×=3,解得r=3,故答案为:314甲、乙工程队分别承接了160米、200米的管道铺设任务,已知乙比甲每天多铺设5米,甲、乙完成铺设任务的时间相同,问甲每天铺设多少米?设甲每天铺设x米,根据题意可列出方程: =【考点】B6:由实际问题抽象出分式方程【分析】设甲每天铺设x米,则乙每天铺设(x+5)米,根据铺设时间=和甲、乙完成铺设任务的时间相同列出方程即可【解答】解:设甲工程队每天铺设x米,则乙工程队每天铺设(x+5)米,由题意得: =故答案是: =15如图,矩形OABC的边OA,OC分别在x轴、y轴上,点B在第一象限,点D在边BC上,且AOD=30°,四边形OABD及四边形OABD关于直线OD对称(点A和A,B和B分别对应)若AB=1,反比例函数y=(k0)的图象恰好经过点A,B,则k的值为【考点】G6:反比例函数图象上点的坐标特征;LB:矩形的性质【分析】设B(m,1),得到OA=BC=m,根据轴对称的性质得到OA=OA=m,AOD=AOD=30°,求得AOA=60°,过A作AEOA于E,解直角三角形得到A(m, m),列方程即可得到结论【解答】解:四边形ABCO是矩形,AB=1,设B(m,1),OA=BC=m,四边形OABD及四边形OABD关于直线OD对称,OA=OA=m,AOD=AOD=30°,AOA=60°,过A作AEOA于E,OE=m,AE=m,A(m, m),反比例函数y=(k0)的图象恰好经过点A,B,mm=m,m=,k=故答案为:16小明家的洗手盆上装有一种抬启式水龙头(如图1),完全开启后,水流路线呈抛物线,把手端点A,出水口B和落水点C恰好在同一直线上,点A至出水管BD的距离为12cm,洗手盆及水龙头的相关数据如图2所示,现用高10.2cm的圆柱型水杯去接水,若水流所在抛物线经过点D和杯子上底面中心E,则点E到洗手盆内侧的距离EH为248cm【考点】HE:二次函数的应用【分析】先建立直角坐标系,过A作AGOC于G,交BD于Q,过M作MPAG于P,根据ABQACG,求得C(20,0),再根据水流所在抛物线经过点D(0,24)和B(12,24),可设抛物线为y=ax2+bx+24,把C(20,0),B(12,24)代入抛物线,可得抛物线为y=x2+x+24,最后根据点E的纵坐标为10.2,得出点E的横坐标为6+8,据此可得点E到洗手盆内侧的距离【解答】解:如图所示,建立直角坐标系,过A作AGOC于G,交BD于Q,过M作MPAG于P,由题可得,AQ=12,PQ=MD=6,故AP=6,AG=36,RtAPM中,MP=8,故DQ=8=OG,BQ=128=4,由BQCG可得,ABQACG,=,即=,CG=12,OC=12+8=20,C(20,0),又水流所在抛物线经过点D(0,24)和B(12,24),可设抛物线为y=ax2+bx+24,把C(20,0),B(12,24)代入抛物线,可得,解得,抛物线为y=x2+x+24,又点E的纵坐标为10.2,令y=10.2,则10.2=x2+x+24,解得x1=6+8,x2=68(舍去),点E的横坐标为6+8,又ON=30,EH=30(6+8)=248故答案为:248三、解答题(共8小题,共80分):17(1)计算:2×(3)+(1)2+;(2)化简:(1+a)(1a)+a(a2)【考点】4F:平方差公式;2C:实数的运算;4A:单项式乘多项式【分析】(1)原式先计算乘方运算,化简二次根式,再计算乘法运算,最后算加减运算即可得到结果(2)运用平方差公式即可解答【解答】解:(1)原式=6+1+2=5+2;(2)原式=1a2+a22a=12a18如图,在五边形ABCDE中,BCD=EDC=90°,BC=ED,AC=AD(1)求证:ABCAED;(2)当B=140°时,求BAE的度数【考点】KD:全等三角形的判定及性质【分析】(1)根据ACD=ADC,BCD=EDC=90°,可得ACB=ADE,进而运用SAS即可判定全等三角形;(2)根据全等三角形对应角相等,运用五边形内角和,即可得到BAE的度数【解答】解:(1)AC=AD,ACD=ADC,又BCD=EDC=90°,ACB=ADE,在ABC和AED中,ABCAED(SAS);(2)当B=140°时,E=140°,又BCD=EDC=90°,五边形ABCDE中,BAE=540°140°×290°×2=80°19为培养学生数学学习兴趣,某校七年级准备开设“神奇魔方”、“魅力数独”、“数学故事”、“趣题巧解”四门选修课(每位学生必须且只选其中一门)(1)学校对七年级部分学生进行选课调查,得到如图所示的统计图根据该统计图,请估计该校七年级480名学生选“数学故事”的人数(2)学校将选“数学故事”的学生分成人数相等的A,B,C三个班,小聪、小慧都选择了“数学故事”,已知小聪不在A班,求他和小慧被分到同一个班的概率(要求列表或画树状图)【考点】X6:列表法及树状图法;V5:用样本估计总体;VC:条形统计图【分析】(1)利用样本估计总体,用480乘以样本中选“数学故事”的人数所占的百分比即可估计该校七年级480名学生选“数学故事”的人数;(2)画树状图展示所有6种等可能的结果数,再找出他和小慧被分到同一个班的结果数,然后根据概率公式求解【解答】解:(1)480×=90,估计该校七年级480名学生选“数学故事”的人数为90人;(2)画树状图为:共有6种等可能的结果数,其中他和小慧被分到同一个班的结果数为2,所以他和小慧被分到同一个班的概率=20在直角坐标系中,我们把横、纵坐标都为整数的点称为整点,记顶点都是整点的三角形为整点三角形如图,已知整点A(2,3),B(4,4),请在所给网格区域(含边界)上按要求画整点三角形(1)在图1中画一个PAB,使点P的横、纵坐标之和等于点A的横坐标;(2)在图2中画一个PAB,使点P,B横坐标的平方和等于它们纵坐标和的4倍【考点】N4:作图应用及设计作图【分析】(1)设P(x,y),由题意x+y=2,求出整数解即可解决问题;(2)设P(x,y),由题意x2+42=4(4+y),求出整数解即可解决问题;【解答】解:(1)设P(x,y),由题意x+y=2,P(2,0)或(1,1)或(0,2)不合题意舍弃,PAB如图所示(2)设P(x,y),由题意x2+42=4(4+y),整数解为(2,1)等,PAB如图所示21如图,在ABC中,AC=BC,ACB=90°,O(圆心O在ABC内部)经过B、C两点,交AB于点E,过点E作O的切线交AC于点F延长CO交AB于点G,作EDAC交CG于点D (1)求证:四边形CDEF是平行四边形;(2)若BC=3,tanDEF=2,求BG的值【考点】MC:切线的性质;L7:平行四边形的判定及性质;T7:解直角三角形【分析】(1)连接CE,根据等腰直角三角形的性质得到B=45°,根据切线的性质得到FEC=B=45°,FEO=90°,根据平行线的性质得到ECD=FEC=45°,得到EOC=90°,求得EFOD,于是得到结论;(2)过G作GNBC于N,得到GMB是等腰直角三角形,得到MB=GM,根据平行四边形的性质得到FCD=FED,根据余角的性质得到CGM=ACD,等量代换得到CGM=DEF,根据三角函数的定义得到CM=2GM,于是得到结论【解答】解:(1)连接CE,在ABC中,AC=BC,ACB=90°,B=45°,EF是O的切线,FEC=B=45°,FEO=90°,CEO=45°,DECF,ECD=FEC=45°,EOC=90°,EFOD,四边形CDEF是平行四边形;(2)过G作GNBC于N,GMB是等腰直角三角形,MB=GM,四边形CDEF是平行四边形,FCD=FED,ACD+GCB=GCB+CGM=90°,CGM=ACD,CGM=DEF,tanDEF=2,tanCGM=2,CM=2GM,CM+BM=2GM+GM=3,GM=1,BG=GM=22如图,过抛物线y=x22x上一点A作x轴的平行线,交抛物线于另一点B,交y轴于点C,已知点A的横坐标为2(1)求抛物线的对称轴和点B的坐标;(2)在AB上任取一点P,连结OP,作点C关于直线OP的对称点D;连结BD,求BD的最小值;当点D落在抛物线的对称轴上,且在x轴上方时,求直线PD的函数表达式【考点】HA:抛物线及x轴的交点;H8:待定系数法求二次函数解析式【分析】(1)思想确定点A的坐标,利用对称轴公式求出对称轴,再根据对称性可得点B坐标;(2)由题意点D在以O为圆心OC为半径的圆上,推出当O、D、B共线时,BD的最小值=OBOD;当点D在对称轴上时,在RtOD=OC=5,OE=4,可得DE=3,求出P、D的坐标即可解决问题;【解答】解:(1)由题意A(2,5),对称轴x=4,A、B关于对称轴对称,B(10,5)(2)如图1中,由题意点D在以O为圆心OC为半径的圆上,当O、D、B共线时,BD的最小值=OBOD=5=55如图2中, 图2当点D在对称轴上时,在RtODE中,OD=OC=5,OE=4,DE=3,点D的坐标为(4,3)设PC=PD=x,在RtPDK中,x2=(4x)2+22,x=,P(,5),直线PD的解析式为y=x+23小黄准备给长8m,宽6m的长方形客厅铺设瓷砖,现将其划分成一个长方形ABCD区域(阴影部分)和一个环形区域(空白部分),其中区域用甲、乙、丙三种瓷砖铺设,且满足PQAD,如图所示(1)若区域的三种瓷砖均价为300元/m2,面积为S(m2),区域的瓷砖均价为200元/m2,且两区域的瓷砖总价为不超过12000元,求S的最大值;(2)若区域满足AB:BC=2:3,区域四周宽度相等求AB,BC的长;若甲、丙两瓷砖单价之和为300元/m2,乙、丙瓷砖单价之比为5:3,且区域的三种瓷砖总价为4800元,求丙瓷砖单价的取值范围【考点】C9:一元一次不等式的应用;HE:二次函数的应用;LB:矩形的性质【分析】(1)根据题意可得300S+(48S)20012000,解不等式即可;(2)设区域四周宽度为a,则由题意(62a):(82a)=2:3,解得a=1,由此即可解决问题;设乙、丙瓷砖单价分别为5x元/m2和3x元/m2,则甲的单价为元/m2,由PQAD,可得甲的面积=矩形ABCD的面积的一半=12,设乙的面积为s,则丙的面积为(12s),由题意12+5xs+3x(12s)=4800,解得s=,由0s12,可得012,解不等式即可;【解答】解:(1)由题意300S+(48S)20012000,解得S24S的最大值为24(2)设区域四周宽度为a,则由题意(62a):(82a)=2:3,解得a=1,AB=62a=4,CB=82a=6设乙、丙瓷砖单价分别为5x元/m2和3x元/m2,则甲的单价为元/m2,PQAD,甲的面积=矩形ABCD的面积的一半=12,设乙的面积为s,则丙的面积为(12s),由题意12+5xs+3x(12s)=4800,解得s=,0s12,012,0x50,丙瓷砖单价3x的范围为03x150元/m224如图,已知线段AB=2,MNAB于点M,且AM=BM,P是射线MN上一动点,E,D分别是PA,PB的中点,过点A,M,D的圆及BP的另一交点C(点C在线段BD上),连结AC,DE(1)当APB=28°时,求B和的度数;(2)求证:AC=AB(3)在点P的运动过程中当MP=4时,取四边形ACDE一边的两端点和线段MP上一点Q,若以这三点为顶点的三角形是直角三角形,且Q为锐角顶点,求所有满足条件的MQ的值;记AP及圆的另一个交点为F,将点F绕点D旋转90°得到点G,当点G恰好落在MN上时,连结AG,CG,DG,EG,直接写出ACG和DEG的面积之比【考点】MR:圆的综合题【分析】(1)根据三角形ABP是等腰三角形,可得B的度数,再连接MD,根据MD为PAB的中位线,可得MDB=APB=28°,进而得到=2MDB=56°;(2)根据BAP=ACB,BAP=B,即可得到ACB=B,进而得出AC=AB;(3)记MP及圆的另一个交点为R,根据AM2+MR2=AR2=AC2+CR2,即可得到PR=,MR=,再根据Q为直角三角形锐角顶点,分四种情况进行讨论:当ACQ=90°时,当QCD=90°时,当QDC=90°时,当AEQ=90°时,即可求得MQ的值为或或;先判定DEG是等边三角形,再根据GMD=GDM,得到GM=GD=1,过C作CHAB于H,由BAC=30°可得CH=AC=1=MG,即可得到CG=MH=1,进而得出SACG=CG×CH=,再根据SDEG=,即可得到ACG和DEG的面积之比【解答】解:(1)MNAB,AM=BM,PA=PB,PAB=B,APB=28°,B=76°,如图1,连接MD,MD为PAB的中位线,MDAP,MDB=APB=28°,=2MDB=56°;(2)BAC=MDC=APB,又BAP=180°APBB,ACB=180°BACB,BAP=ACB,BAP=B,ACB=B,AC=AB;(3)如图2,记MP及圆的另一个交点为R,MD是RtMBP的中线,DM=DP,DPM=DMP=RCD,RC=RP,ACR=AMR=90°,AM2+MR2=AR2=AC2+CR2,12+MR2=22+PR2,12+(4PR)2=22+PR2,PR=,MR=,当ACQ=90°时,AQ为圆的直径,Q及R重合,MQ=MR=;如图3,当QCD=90°时,在RtQCP中,PQ=2PR=,MQ=;如图4,当QDC=90°时,BM=1,MP=4,BP=,DP=BP=,cosMPB=,PQ=,MQ=;如图5,当AEQ=90°时,由对称性可得AEQ=BDQ=90°,MQ=;综上所述,MQ的值为或或;ACG和DEG的面积之比为理由:如图6,DMAF,DF=AM=DE=1,又由对称性可得GE=GD,DEG是等边三角形,EDF=90°60°=30°,DEF=75°=MDE,GDM=75°60°=15°,GMD=PGDGDM=15°,GMD=GDM,GM=GD=1,过C作CHAB于H,由BAC=30°可得CH=AC=AB=1=MG,AH=,CG=MH=1,SACG=CG×CH=,SDEG=,SACG:SDEG=第 18 页

    注意事项

    本文(浙江省温州市2017年中考数学真题试题(含解析1).doc)为本站会员(叶***)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开