高三数学选择题专题训练17套含答案.doc
专题训练(一)(每个专题时间:35分钟,满分:60分)题号123456789101112答案1函数的定义域是( )A B C D 2函数, 则 ( )A1 B1 C D3圆的圆心到直线的距离为( )A2 B C1 D4不等式的解集是( )A BC D5( )A B C D6若向量的夹角为,,则向量的模为( ) A2 B4 C6 D127已知p是r的充分不必要条件,s是r的必要条件,q是s的必要条件。那么p是q成立的( )A充分不必要条件 B必要不充分条件 C充要条件 D既不充分也不必要条件8不同直线和不同平面,给出下列命题( )其中假命题有:( ) A0个 B1个 C2个 D3个9 若是等差数列,首项,则使前n项和 成立的最大自然数n是( )A4005 B4006 C4007 D400810已知双曲线的左,右焦点分别为,点P在双曲线的右支上,且,则此双曲线的离心率e的最大值为( )A B C D11已知盒中装有3只螺口及7只卡口灯炮,这些灯炮的外形及功率都相同且灯口向下放着,现需要一只卡口灯炮使用,电工师傅每次从中任取一只并不放回,则他直到第3次才取得卡口灯炮的概率为( )A B C D12 如图,棱长为5的正方体无论从哪一个面看,都有两个直通的边长为1的正方形孔,则这个有孔正方体的表面积(含孔内各面)是( )A258 B234 C222 D210专题训练(二)题号123456789101112答案1设集合U=1,2,3,4,5,A=1,3,5,B=2,3,5,则等于( )A1,2,4B4C3,5D2的值是( )A2 B2+ C4 D3命题p:若a、bR,则|a|+|b|>1是|a+b|>1的充要条件; 命题q:函数y=的定义域是(,13,+.则( )A“p或q”为假 B“p且q”为真 Cp真q假 Dp假q真4已知F1、F2是椭圆的两个焦点,过F1且及椭圆长轴垂直的直线交椭圆于A、B两点,若ABF2是正三角形,则这个椭圆的离心率为( )A B C D5设Sn是等差数列的前n项和,若( )A1B1C2D6已知m、n是不重合的直线,、是不重合的平面,有下列命题:若m,n,则mn;若m,m,则;若=n,mn,则m且m;若m,m,则.其中真命题的个数是( )A0 B1 C2 D37已知函数y=log2x的反函数是y=f1(x),则函数y= f1(1x)的图象是( )8已知a、b是非零向量且满足(a2b) a,(b2a) b,则a及b的夹角是( )A B C D9已知展开式中常数项为1120,其中实数a是常数,则展开式中各项系数的和是( )A28B38C1或38D1或2810如图,A、B、C是表面积为48的球面上三点,AB=2,BC=4,ABC=60º,O为球心,则直线OA及截面ABC所成的角是( )AarcsinBarccosCarcsinDarccos11定义在R上的偶函数f(x)满足f(x)=f(x+2),当x3,4时,f(x)= x2,则( )Af(sin)<f(cos) Bf(sin)>f(cos)Cf(sin1)<f(cos1) Df(sin)>f(cos)12如图,B地在A地的正东方向4 km处,C地在B地的北偏东30°方向2 km处,河流的沿岸PQ(曲线)上任意一点到A的距离比到B的距离远2km,现要在曲线PQ上任意选一处M建一座码头,向B、C两地转运货物,经测算,从M到B、C两地修建公路的费用都是a万元/km、那么修建这两条公路的总费用最低是( )A(+1)a万元B(22) a万元C2a万元D(1) a万元专题训练(三)题号123456789101112答案1已知平面向量=(3,1),=(x,3),且,则x= ( )A3 B1 C1 D32已知则( )A B C D3设函数在x=2处连续,则a= ( )ABC D4已知等比数列的前n项和,则等于()A B CD5函数f(x)是( )A周期为的偶函数 B周期为的奇函数 C 周期为2的偶函数 D.周期为2的奇函数 6一台X型号自动机床在一小时内不需要工人照看的概率为0.8000,有四台这中型号的自动机床各自独立工作,则在一小时内至多2台机床需要工人照看的概率是( )A0.1536 B 0.1808C 0.5632D 0.9728 7在棱长为1的正方体上,分别用过共顶点的三条棱中点的平面截该正方体,则截去8个三棱锥后,剩下的凸多面体的体积是( )A B C D 8若双曲线的焦点到它相对应的准线的距离是2,则k= ( ) A 6 B 8 C 1 D 49当时,函数的最小值是( ) A 4 B C2 D 10变量x、y满足下列条件: 则使z=3x+2y的值最小的(x,y)是( ) A ( 4.5 ,3 ) B ( 3,6 ) C ( 9, 2 ) D ( 6, 4 ) 11若则( ) A B C D 12如右下图,定圆半径为 ( b ,c ), 则直线ax+by+c=0及直线 xy+1=0的交点在( ) A 第四象限 B 第三象限 C第二象限 D 第一象限 专题训练(四)题号123456789101112答案1设集合P=1,2,3,4,Q=,则PQ等于( )A1,2 B 3,4 C 1 D -2,-1,0,1,22函数y=2cos2x+1(xR)的最小正周期为 ( )A B C D3从4名男生和3名女生中选出4人参加某个座谈会,若这4人中必须既有男生又有女生,则不同的选法共有( )A140种 B120种 C35种 D34种4一平面截一球得到直径是6cm的圆面,球心到这个平面的距离是4cm,则该球的体积是( )A B C D 5若双曲线的一条准线及抛物线的准线重合,则双曲线的离心率为 ( )A B C 4 D0.5人数(人)时间(小时)2010501.01.52.0156某校为了了解学生的课外阅读情况,随机调查了50名学生,得到他们在某一天各自课外阅读所用时间的数据,结果用右侧的条形图表示. 根据条形图可得这50名学生这一天平均每人的课外阅读时间为 ( )A0.6小时 B0.9小时C1.0小时 D1.5小时7的展开式中x3的系数是( )A6 B12C24 D488若函数的图象过两点(-1,0)和(0,1),则( )Aa=2,b=2 Ba=,b=2 Ca=2,b=1 Da=,b=9将一颗质地均匀的骰子(它是一种各面上分别标有点数1,2,3,4,5,6的正方体玩具)先后抛掷3次,至少出现一次6点向上的概率是( )A B C D10函数在闭区间-3,0上的最大值、最小值分别是( )A1,-1 B1,-17 C3,-17 D9,-1911设k>1,f(x)=k(x-1)(xR) . 在平面直角坐标系xOy中,函数y=f(x)的图象及x轴交于A 点,它的反函数y=f -1(x)的图象及y轴交于B点,并且这两个函数的图象交于P点. 已知四边形OAPB的面积是3,则k等于( )A3 B C D12设函数,区间M=a,b(a<b),集合N=,则使M=N成立的实数对(a,b)有 ( )A0个 B1个 C2个 D无数多个专题训练(五)题号123456789101112答案1若的终边所在象限是( )A第一象限B第二象限C第三象限D第四象限2对于,给出下列四个不等式其中成立的是( )A及B及C及D及3已知、是不同的两个平面,直线,命题无公共点;命题. 则的( )A充分而不必要的条件B必要而不充分的条件C充要条件D既不充分也不必要的条件4圆截直线x-y-50所得弦长等于()A B C1D55甲、乙两人独立地解同一问题,甲解决这个问题的概率是p1,乙解决这个问题的概率是p2,那么恰好有1人解决这个问题的概率是( )AB CD6已知点、,动点,则点P的轨迹是( )A圆B椭圆C双曲线D抛物线7已知函数,则下列命题正确的是( ) A是周期为1的奇函数B是周期为2的偶函数C是周期为1的非奇非偶函数D是周期为2的非奇非偶函数8已知随机变量的概率分布如下:12345678910m 则( )ABCD9已知点、,动点P满足. 当点P的纵坐标是时,点P到坐标原点的距离是( )ABCD210设A、B、C、D是球面上的四个点,且在同一平面内,AB=BC=CD=DA=3,球心到该平面的距离是球半径的一半,则球的体积是( )ABCD11若函数的图象(部分)如图所示,则的取值是( )ABCD12有两排座位,前排11个座位,后排12个座位,现安排2人就座,规定前排中间的3个座位不能坐,并且这2人不左右相邻,那么不同排法的种数是( )A234B346C350D363专题训练(六)题号123456789101112答案1设集合U=1,2,3,4,5,A=1,2,3,B=2,5,则A(CU B)=( )A2B2,3C3D 1,32已知函数( )ABC2D23已知a+b均为单位向量,它们的夹角为60°,那么|a+3b|=( )ABCD44函数的反函数是( )ABCD5的展开式中常数项是( )A14B14C42D426设若则=( )ABCD47椭圆的两个焦点为F1、F2,过F1作垂直于轴的直线及椭圆相交,一个交点为P,则=( )ABCD48设抛物线的准线及轴交于点Q,若过点Q的直线及抛物线有公共点,则直线的斜率的取值范围是( )AB2,2C1,1D4,49为了得到函数的图象,可以将函数的图象( )A向右平移个单位长度B向右平移个单位长度C向左平移个单位长度D向左平移个单位长度10已知正四面体ABCD的表面积为S,其四个面的中心分别为E、F、G、H,设四面体EFGH的表面积为T,则等于( )ABCD11从1,2,9这九个数中,随机抽取3个不同的数,则这3个数的和为偶数的概率是( )ABCD12已知的最小值为( )ABCD+专题训练(七)题号123456789101112答案1已知集合,则集合=( )ABCD 2函数的反函数是( )A BCD3曲线在点(1,1)处的切线方程为( )ABCD4已知圆C及圆关于直线对称,则圆C的方程为( )ABCD5已知函数的图象过点,则可以是( )ABCD6正四棱锥的侧棱长及底面边长都是1,则侧棱及底面所成的角为( )A75°B60°C45°D30°7函数的图象( )A及的图象关于轴对称B及的图象关于坐标原点对称C及的图象关于轴对称D及的图象关于坐标原点对称8已知点A(1,2)、B(3,1),则线段AB的垂直平分线的方程是( )ABCD9已知向量a、b满足:|a|=1,|b|=2,|ab|=2,则|a+b|=( )A1BCD10已知球O的半径为1,A、B、C三点都在球面上,且每两点间的球面距离均为,则球心O到平面ABC的距离为( )ABCD 11函数的最小正周期为( )ABCD212在由数字1,2,3,4,5组成的所有没有重复数字的5位数中,大于23145且小于43521的数共有( )A56个B57个C58个D60个专题训练(八)题号123456789101112答案1、设集合,则集合中元素的个数为( )A1 B2 C3 D42、函数的最小正周期是( )A B C D3、记函数的反函数为,则( )A 2 B C 3D 4、等比数列中, ,则的前4项和为( )A 81 B 120 C168 D 192 5、圆在点处的切线方程是( )A B C D 6、展开式中的常数项为( )A 15 B C 20 D 7、若ABC的内角满足sinAcosA0,tanA-sinA0,则角A的取值范围是()A(0,) B(,) C(,)D(,p )8、设双曲线的焦点在轴上,两条渐近线为,则双曲线的离心率( )A 5 B C D 9、不等式的解集为( )A B C D 10、正三棱锥的底面边长为2,侧面均为直角三角形,则此三棱锥的体积为( )A B C D 11、在中,则边上的高为( )A B C D12、4名教师分配到3所中学任教,每所中学至少1名教师,则不同的分配方案共有( )A 12 种 B 24 种 C 36 种 D 48 种 专题训练(九)题号123456789101112答案1设集合U=1,2,3,4,5,集合M=0,3,5,N=1,4,5,则M(CU N)=( )A5B0,3C0,2,3,5D 0,1,3,4,52函数的反函数为( )ABCD3正三棱柱侧面的一条对角线长为2,且及底面成45°角,则此三棱柱的体积为( )AB CD 4 函数在处的导数等于( )A1B2C3D45为了得到函数的图象,可以把函数的图象( )A向左平移3个单位长度B向右平移3个单位长度C向左平移1个单位长度D向右平移1个单位长度6等差数列中,则此数列前20项和等于A160B180C200D2207已知函数的图象有公共点A,且点A的横坐标为2,则( )ABCD8已知圆C的半径为2,圆心在轴的正半轴上,直线及圆C相切,则圆C的方程为( )AB CD 9从5位男教师和4位女教师中选出3位教师,派到3个班担任班主任(每班1位班主任),要求这3位班主任中男、女教师都要有,则不同的选派方案共有( )A210种B420种C630种D840种10函数的最小值等于( )A3B2C1D11已知球的表面积为20,球面上有A、B、C三点.如果AB=AC=BC=2,则球心到平面ABC的距离为( )A1BCD212ABC中,a、b、c分别为A、B、C的对边.如果a、b、c成等差数列,B=30°,ABC的面积为,那么b=( )ABCD专题训练(十)题号123456789101112答案1设集合那么下列结论正确的是( )A B包含Q CD 真包含于P2 不等式的解集为( )A B C D3对任意实数在下列命题中,真命题是( )A是的必要条件 B是的必要条件C是的充分条件 D是的充分条件4若平面向量及向量的夹角是,且,则( )A B C D 5设P是双曲线上一点,双曲线的一条渐近线方程为,、分别是双曲线的左、右焦点。若,则( )A 或 B 6 C 7 D96若函数在区间上的最大值是最小值的3倍,则=( )A B C D7若过定点且斜率为的直线及圆在第一象限内的部分有交点,则的取值范围是( )A BC D 8如图,定点A和B都在平面内,定点 C是内异于A和B的动点,且那么,动点C在平面内的轨迹是( )A一条线段,但要去掉两个点 B一个圆,但要去掉两个点C一个椭圆,但要去掉两个点 D半圆,但要去掉两个点9 函数的反函数是( )ABC D10函数)为增函数的区间是( )A B C D11如图,在长方体中,分别过BC、的两个平行截面将长方体分成三部分,其体积分别记为,,. 若,则截面的面积为( )A B C D12定义在R上的函数既是偶函数又是周期函数.若的最小正周期是,且当时,则的值为( )A B C D专题训练(十一)题号123456789101112答案1若U=1,2,3,4, M=1,2,N=2,3, 则( )(A) 1,2,3 (B) 4 (C) 1,3,4 (D) 22直线y=2及直线x+y2=0的夹角是( )(A) (B) (C) (D)已知等差数列的公差为2,若成等比数列, 则=( )(A) 4 (B) 6 (C) 8 (D) 10已知向量且,则=(A) (B) (C) (D)点P从(1,0)出发,沿单位圆逆时针方向运动弧长到达Q点,则Q的坐标为( )(A)( (B)( (C)( (D)(曲线y2=4x关于直线x=2对称的曲线方程是( )(A)y2=8-4x (B)y2=4x-8 (C)y2=16-4x (D)y2=4x-16 若展开式中存在常数项,则n的值可以是( )(A) 8 (B) 9 (C) 10 (D) 12“”“A=30º”的( )(A) 充分而不必要条件 (B) 必要而不充分条件(C) 充分必要条件 (D) 既不充分也不必要条件若函数的定义域和值域都是0,1,则a=( )(A) (B) (C) (D)210如图,在正三棱柱ABCA1B1C1中已知AB=1,D在棱BB1上,且BD=1,若AD及平面AA1C1C所成的角为,则=(A) (B) (C) (D)11椭圆的左、右焦点分别为F1、F2,线段F1F2被点(,0)分成5:3两段,则此椭圆的离心率为( ) (A) (B) (C) (D)12若和g(x)都是定义在实数集R上的函数,且方程有实数解,则不可能是( )(A) (B) (C) (D)专题训练(十二)题号123456789101112答案1函数 的定义域为( )ABCD2设直线 ax+by+c=0的倾斜角为,且sin+cos=0,则a,b满足( )ABCD3设是函数f(x)=的反函数,则下列不等式中恒成立的是( )ABCD4如果双曲线上一点P到右焦点的距离为, 那么点P到右准线的距离是( )AB13C5D5把正方形ABCD沿对角线AC折起,当A、B C、D四点为顶点的三棱锥体积最大时,直线BD及平面ABC所成的角的大小为( )A90°B60°C45°D30°6某公司甲、乙、丙、丁四个地区分别有150 个、120个、180个、150个销售点.公司为了调查产品的情况,需从这600个销售点中抽取一个容量为100的样本,记这项调查为;在丙地区中有20个特大型销售点,要从中抽取7个调查其收入和售后服务等情况,记这项调查为.则完成这两项调查宜采用的抽样方法依次为( )A分层抽样法,系统抽样法B分层抽样法,简单随机抽样法C系统抽样法,分层抽样法D简单随机抽样法,分层抽样法7若f(x)=-x2+2ax及在区间1,2上都是减函数,则a的值范围是( ) ABC(0,1)D8已知向量,向量则的最大值,最小值分别是( )ABC16,0D4,09若函数f(x)=x2+bx+c的图象的顶点在第四象限,则函数f /(x)的图象是( )xyoAxyoDxyoCxyoB10从正方体的八个顶点中任取三个点作为三角形,直角三角形的个数为( )A56B52C48D4011农民收入由工资性收入和其它收入两部分构成.2003年某地区农民人均收入为3150元(其中工资性收入为1800元,其它收入为1350元), 预计该地区自2004年起的5 年内,农民的工资性收入将以每年6%的年增长率增长,其它收入每年增加160元。根据以上数据,2008年该地区农民人均收入介于( )A4200元4400元B4400元4600元 C4600元4800元 D4800元5000元12设集合U=(x,y)|xR,yR, A=(x,y)|2x-y+m>0, B=(x,y)|x+y-n0,那么点P(2,3)的充要条件是( )ABCD专题训练(十三)题号123456789101112答案1设,则等于( )A. B. C. D. 2满足条件的复数在复平面上对应点的轨迹是( )A. 一条直线B. 两条直线C. 圆D. 椭圆3设m、n是两条不同的直线,是三个不同的平面,给出下列四个命题:若,则 若,则若,则若,则其中正确命题的序号是( )A. 和 B. 和 C. 和 D. 和4已知a、b、c满足,且,那么下列选项中一定成立的是( )A. B. C. D. 5从长度分别为1,2,3,4的四条线段中,任取三条的不同取法共有n种,在这些取法中,以取出的三条线段为边可组成的三角形的个数为m,则等于( )A. 0 B. C. D. 6如图,在正方体中,P是侧面内一动点,若P到直线BC及直线的距离相等,则动点P的轨迹所在的曲线是( )A. 直线 B. 圆 C. 双曲线 D. 抛物线7函数在区间1,2上存在反函数的充分必要条件是( )A. B. C. D. 8在下列关于直线l、m及平面、的命题中,真命题是( )A若l且,则l. B若l且,则l.C若l且,则l. D若=m且lm,则l.9三角方程2sin(x)=1的解集为( )Axx=2k+,kZ. Bxx=2k+,kZ.Cxx=2k±,kZ. Dxx=k+(1)K,kZ.10若函数y=f(x)的图象及函数y=lg(x+1)的图象关于直线xy=0对称,则f(x)=( )A10x1. B110x. C110x. D10x1.11某地2004年第一季度应聘和招聘人数排行榜前5个行业的情况列表如下行业名称计算机机械营销物流贸易应聘人数2158302002501546767457065280行业名称计算机营销机械建筑化工招聘人数124620102935891157651670436若用同一行业中应聘人数及招聘人数比值的大小来衡量该行业的就业情况,则根据表中数据,就业形势一定是( )A计算机行业好于化工行业. B建筑行业好于物流行业.C机械行业最紧张. D营销行业比贸易行业紧张.12函数,其中P、M为实数集R的两个非空子集,又规定,给出下列四个判断:若,则 若,则若,则 若,则其中正确判断有( )A. 3个 B. 2个 C. 1个 D. 0个专题训练(十四)题号123456789101112答案1设等于( )A1,4B1,6C4,6D1,4,62已知点M(6,2)和M2(1,7).直线y=mx7及线段M1M2的交点M分有向线段M1M2的比为3:2,则m的值为( )ABCD43已知函数的解析式可能为( )ABCD4两个圆的公切线有且仅有( )A1条B2条C3条D4条5若函数、三、四象限,则一定有( )ABCD6四面体ABCD四个面的重心分别为E、F、G、H,则四面体EFGH的表面积及四面体ABCD的表面积的比值是( )ABCD7已知为非零的平面向量. 甲:( )A甲是乙的充分条件但不是必要条件B甲是乙的必要条件但不是充分条件C甲是乙的充要条件D甲既不是乙的充分条件也不是乙的必要条件8已知有( )A最大值B最小值C最大值1D最小值19已知数列的前n项和其中a、b是非零常数,则存在数列、使得( )A为等差数列,为等比数列B和都为等差数列C为等差数列,都为等比数列D和都为等比数列10若则下列结论中不正确的是( )ABCD11将标号为1,2,10的10个球放入标号为1,2,10的10个盒子里,每个盒内放一个球,恰好3个球的标号及其在盒子的标号不一致的放入方法种数为( )A120B240C360D72012设是某港口水的深度y(米)关于时间t(时)的函数,其中.下表是该港口某一天从0时至24时记录的时间t及水深y的关系:t03691215182124y1215.112.19.111.914.911.98.912.1经长期观观察,函数的图象可以近似地看成函数的图象.在下面的函数中,最能近似表示表中数据间对应关系的函数是( )ABCD专题训练(十五)题号123456789101112答案1设全集UR,那么下列关系中正确的是()AMN BC D2 要从其中有50个红球的1000个球中,采用按颜色分层抽样的方法抽取100个进行分析,则应抽取红球的个数为()A5个 B10个C20个D45个3如果函数(a0,)是增函数,那么函数的图像大致是()4若实数x,y满足等式,那么的最大值是()AB CD5以平行六面体相邻两个面上互相异面的两条面对角线的端点为顶点的四面体的体积是平行六面的体积的()ABC D6已知奇函数f(x)在(-,0)为减函数,且f(2)0,则不等式(x-1)f(x-1)0的解集为()Ax|-3x-1Bx|-3x1或x2Cx|-3x0或x3Dx|-1x1或1x37一个等差数列共有10项,其中奇数项的和为,偶数项的和为15,则这个数列的第6项是()A3 B4