欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    高一下册数学教案:6.1《正切函数的图像与性质》(1)(沪教版).doc

    • 资源ID:42847618       资源大小:368.50KB        全文页数:7页
    • 资源格式: DOC        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    高一下册数学教案:6.1《正切函数的图像与性质》(1)(沪教版).doc

    6.2 正切函数的图像及性质(1) 上海市南洋中学 卢久红一、教学内容分析本节内容是学生在学习了正弦、余弦函数图像和基本性质以后的知识,学生已经掌握了三角函数线的画法,并且对三角函数性质的讨论方法已经有了一个比较清晰的认识.因此通过正切函数的图像来认识函数的性质,并通过例题来巩固对性质的掌握是学习“正切函数的图像及性质”的一条主线.二、教学目标设计1.理解利用正切线作出的正切函数图像.2.通过观察正切函数图像了解及感悟正切函数的性质.3.通过练习及训练体验并初步掌握正切函数的基本性质.三、教学重点及难点 利用正切线作正切函数的图像;正切函数单调性的证明以及周期性的确定.四、教学用具准备多媒体设备利用诱导公式,画出在R上的大致图像;观察图像,探索及讨论正切函数的性质利用正切线作出正切函数在上的图像五、教学流程设计 布置课外作业总结提炼方法,结合图像归纳小结函数性质引导学生证明正切函数单调性并利用单调性解决一些实际例题;通过周期的求解,感悟求一般函数y=tan(x+)周期的方法六、教学过程设计一、 复习引入 1复习我们在前几节中学习了正弦函数线、余弦函数线以及正切函数线,我们通过正弦函数线,画出了正弦函数的图像,并研究了函数的性质.今天,我们同样按照这样的方法通过正切线来画出正切函数的图像,并研究和讨论它的性质. 2引入y 当在第一像限时, 正弦线sin=BM>0T余弦线cos=OM>0M正切线tan=AT>0那么,当在其它三个像限的情况呢?请同学们画Bx出其它三个像限的正切线.O我们将区间进行八等分,9个点分别为分别画出其中的正切线,然后利用描点法画出正切函数的大致图像.Y=tan xy由正切三角比的诱导公式可知:那么y=,可知为y=tanx的一个周期.由此,我们可以画出y=tanx在R上的大致图像如下:0yx二、学习新课1. 探究性质观察正切函数的图像,引导学生得正切函数的性质:1.定义域:,2.值域:R 观察:当从小于, 时, 当从大于,时,.3.周期性:4.奇偶性:奇函数.5.单调性:在开区间内,函数单调递增.从图像上看出函数y=tanx的单调区间是,但是我们怎样从理论上去加以证明呢?考察这个区间内的函数y=tanx的单调性.在这个区间内任意取,且,y1-y2=tanx1-tanx2因为,所以则cosx1、cosx2>0sin()<0,从而tanx1-tanx2<0,y1<y2.即正切函数y=tanx在上是增函数.由奇函数的性质可知,在上正切函数y=tanx也是增函数.由于y=tanx的周期为,则函数y=tanx在开区间内单调递增.除了上述证明方法以外,请同学们思考:对于正切函数y=tanx,你还有什么方法能够证明它在开区间内单调递增吗?证法2:在这个区间内任意取,且, tanx1-tanx2= 因为tan(x1-x2)<0,tanx10,tanx2>0.因此1+tanx1·tanx2>0.则tanx1-tanx2<0, tanx1<tanx2, 即正切函数y=tanx在上是增函数.接下来的证明同前一种方法.说明在考虑正切函数单调性的时候,一定要讲在每一个单调区间上是增函数,而不能讲它在定义域上是增函数,为什么?请同学们思考并说明之. 2例题分析例1.(1)比较tan1670及tan1730的大小;(2)比较及的大小.解:(1)900<1670<1730<1800,而y=tanx在9001800上单调增函数,tan1670<tan1730(2),又:内单调递增,例2. 讨论函数的性质.略解:定义域:;值域: R ; 它是非奇非偶函数;在上是增函数;令f(x)=tan(x+)=tan(x+)=tan(x+)+=f(x+)因此,函数f(x)的周期是. 3问题拓展例3.求下列函数的单调区间:解:数,递增区间为单调递增区间是:变式问题1:求函数的单调区间:解:因为原函数可以化为:单调递增区间为:单调递减区间为说明在考虑正切函数及其他函数复合的问题时,需要分别注意这两个函数的单调性,然后根据复合函数的规则:增增得增,增减得减,确定单调区间.例4. 求下列函数的周期:解:变式问题2:求解解:思考由上面的例4及其变式,请你归纳一下函数y=Atan(x+)的周期是什么?()三、巩固练习l 求函数y=tan的定义域、值域,并指出它的奇偶性、单调性以及周期.解:令u=3x-,则y=tanu,由u可得:,即函数的定义域是y=tanu的值域为R,因此y=tan的值域为R .存在x=和x=-,使tan(3·-)±tan3·(-)-,所以,y=tan是非奇非偶函数.由可以得到y=tan在上是增函数.令f(x)=y= tan=tan=tan3(x+)-=f(x+)f(x)=f(x+),函数f(x)=y= tan的周期是.四、课堂小结小结和归纳这节课所学习的内容:正切函数y=tanx的性质:定义域:值域:全体实数R周期性:正切函数是周期函数,最小正周期T=奇偶性:奇函数单调性:正切函数在开区间内都是增函数.我们在求解有关正切函数及其它函数(如一次函数)复合的函数的增减性的时候,一定要将构成此复合函数的每一个函数的单调性都搞清楚,然后根据增增得增、增减得减的原则来确定该函数的单调区间.我们在求解函数周期性的时候,一定要借助y=tanx的周期是的结论,然后再利用周期函数定义f(x)=f(x+T),求出函数的周期.五、作业布置(略)七、教学设计说明本节课是学生在已经掌握了三角函数线的前提下;在学生学习了正弦函数、余弦函数的图像及性质的基础上,进一步分析和探究正切函数的图像和性质.因为对于函数的研究方法学生已经基本掌握.因此,在实际学习的过程中,学生对通过函数图像研究函数性质的研究步骤和手段不会感到很陌生.考虑到本节课为正切函数图像及性质的第一节课,所以选取的例题大多比较基础,重点在于让学生通过图像来理解性质,然后通过例题,初步掌握基本性质.本节课在教学技术上通过多媒体课件让学生直观地理解正切函数图像的画法,通过学生自己的思考以及动态的演示,让学生归纳和感悟正切函数的性质.在例题的设计上从最基本的利用单调性比较大小出发,到函数性质的简单应用,再到单调性和周期性的变式训练,由浅入深,层层递进,以积极发挥课堂教学的基础型和研究型功能,培养学生的基础性学力和发展性学力.在课堂教学中教师遵循“以学生为主体”的思想,鼓励学生善于观察和发现;鼓励学生积极思考和探究;鼓励学生大胆猜想,努力营造一个民主和谐、平等交流的课堂氛围,采取对话式教学,调动学生学习的积极性,激发学生学习的热情,使学生开阔思维空间,让学生积极参及教学活动,提高学生的数学思维能力.第 - 7 - 页

    注意事项

    本文(高一下册数学教案:6.1《正切函数的图像与性质》(1)(沪教版).doc)为本站会员(叶***)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开