欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    91全国高中数学联赛试题及详细解析.docx

    • 资源ID:4288434       资源大小:329.84KB        全文页数:12页
    • 资源格式: DOCX        下载积分:7金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要7金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    91全国高中数学联赛试题及详细解析.docx

    一选择题:1由一个正方体的三个顶点所能构成的正三角形的个数为( ) A4 B8 C12 D24 2设a、b、c均为非零复数,且=,则的值为( ) A1 B C1,2 D1,2 3设a是正整数,a<100,并且a3+23能被24整除,那么,这样的a的个数为( ) A4 B5 C9 D104设函数y=f(x)对于一切实数x满足f(3+x)=f(3x)且方程f(x)=0恰有6个不同的实数根,则这6个实根的和为( ) A18 B12 C9 D0 5设S=(x,y)|x2y2=奇数,x,yR,T=(x,y)|sin(2x2)sin(2y2)=cos(2x2)cos(2y2),x,yR,则( ) AST BTS CS=T DST=6方程|xy2|=1|x|的图象为( ) 二填空题:1cos210+cos250sin40sin80= 2在ABC中,已知三个角A、B、C成等差数列,假设它们所对的边分别为a,b,c,并且ca等于AC边上的高h,则sin= 3将正奇数集合1,3,5,由小到大按第n组有(2n1)个奇数进行分组:1, 3,5,7, 9,11,13,15,17,(第一组) (第二组) (第三组)则1991位于第 组419912000除以106,余数是 5设复数z1,z2满足|z1|=|z1+z2|=3,|z1z2|=3,则log3|(z1)2000+(z2)2000|= 6设集合M=1,2,1000,现对M中的任一非空子集X,令X表示X中最大数与最小数的和那么,所有这样的X的算术平均值为 三设正三棱锥PABC的高为PO,M为PO的中点,过AM作与棱BC平行的平面,将三棱锥截为上、下两部分,试求此两部分的体积比来源:学*科*网四设O为抛物线的顶点,F为焦点,且PQ为过F的弦已知|OF|=a,|PQ|=B求OPQ的面积五已知0<a<1,x2+y=0,求证: loga(ax+ay)loga2+1991年全国高中数学联赛二试题一设S=1,2,n,A为至少含有两项的公差为正的等差数列,其项都在S中,且添加S的其他元素于A后不能构成与A有相同公差的等差数列求这种A的个数(这里只有两项的数列也看作等差数列)二设凸四边形ABCD的面积为1,求证:在它的边上(包括顶点)或内部可以找出四个点,使得以其中任意三点为顶点所构成的四个三角形的面积大于三设an是下述自然数N的个数:N的各位数字之和为n且每位数字只能取1、3或4求证:a2n是完全平方数这里,n=1,2,1991年全国高中数学联赛解答第一试一选择题:1由一个正方体的三个顶点所能构成的正三角形的个数为( ) A4 B8 C12 D24【答案】B【解析】每个正方形的顶点对应着一个正三角形故选B 3设a是正整数,a<100,并且a3+23能被24整除,那么,这样的a的个数为( ) A4 B5 C9 D10【答案】B【解析】即24|a31,而a0,1,2,3,4,则a30,1,0,3,0故a10(mod 8)若a0,1,2(mod 3),则a30,1,1(mod 3), a10(mod 3)即a10(mod 24)选B5设S=(x,y)|x2y2=奇数,x,yR,T=(x,y)|sin(2x2)sin(2y2)=cos(2x2)cos(2y2),x,yR,则( ) AST BTS CS=T DST=【答案】A【解析】若x2y2为奇数,则sin(2x2)sin(2y2)=cos(2x2)cos(2y2)成立,即ST又若x=y时,sin(2x2)sin(2y2)=cos(2x2)cos(2y2)也成立,即得ST,选A6方程|xy2|=1|x|的图象为( ) 【答案】D【解析】 |xy2|=故此方程等价于故选D2在ABC中,已知三个角A、B、C成等差数列,假设它们所对的边分别为a,b,c,并且ca等于AC边上的高h,则sin= 3将正奇数集合1,3,5,由小到大按第n组有(2n1)个奇数进行分组:1,3,5,7,9,11,13,15,17,(第一组) (第二组) (第三组)则1991位于第 组 【答案】32 【解析】由于1+3+(2n1)=n2,故第n组最后一数为2n21,于是解2(n1)21+219912n21,得n=32即在第32组5设复数z1,z2满足|z1|=|z1+z2|=3,|z1z2|=3,则log3|(z1)2000+(z2)2000|= 【答案】4000【解析】由|z1+z2|2+|z1z2|2=2(|z1|2+|z2|2),得|z2|=3由于|z1|=|z2|=|z1+z2|=3,故argz1argz2=120|(z1)2000+(z2)2000|=234000|cos(1202000)|=34000故log3|(z1)2000+(z2)2000|=4000三设正三棱锥PABC的高为PO,M为PO的中点,过AM作与棱BC平行的平面,将三棱锥截为上、下两部分,试求此两部分的体积比【解析】M是PO中点,延长AO与BC交于点D,则D为BC中点,连PD,由于AM在平面PAD内,故延长AM与PD相交,设交点为F题中截面与面PBC交于过F的直线GH,G、H分别在PB、PC上由于BC截面AGH,GHBC在面PAD中,POD被直线AF截,故=1,但=1,=,= =,=而截面分此三棱锥所成两部分可看成是有顶点A的两个棱锥APGH及AHGBC故二者体积比=421第二试一设S=1,2,n,A为至少含有两项的公差为正的等差数列,其项都在S中,且添加S的其他元素于A后不能构成与A有相同公差的等差数列求这种A的个数(这里只有两项的数列也看作等差数列)解法二:对于k=,这样的数列A必有连续两项,一项在1,2,k中,一在k+1.k+2,n中,反之,在此两集合中各取一数,可以其差为公差构成一个A,于是共有这样的数列当n=2k时,这样的A的个数为k2=n2个;当n=2k+1时,这样的A的个数为k(k+1)= (n21)个 这样的数列有n2个来源:Zxxk.Com二设凸四边形ABCD的面积为1,求证:在它的边上(包括顶点)或内部可以找出四个点,使得以其中任意三点为顶点所构成的四个三角形的面积大于 【解析】证明:考虑四边形的四个顶点A、B、C、D,若ABC、BCD、CDA、DAB的面积,设其中面积最小的三角形为ABD 若SABC>,则A、B、C、D即为所求 若SABD<,则SBCD>,取BCD的重心G,则以B、C、D、G这4点中的任意3点为顶点的三角形面积>来源:学科网 若SABD=,其余三个三角形面积均> SABD=由于SABC+SACD=1,而SACD>,故SABC<=SBCD 过A作AEBC必与CD相交,设交点为E则 SABC>SABD,从而SABE>SABD=SACE=SABE>,SBCE=SABC>即A、B、C、E四点即为所求 若SABD=,其余三个三角形中还有一个的面积=,这个三角形不可能是BCD,(否则ABCD的面积=),不妨设SADC= SABD=则ADBC,四边形ABCD为梯形由于SABD=,SABC=,故若AD=a,则BC=3a,设梯形的高=h,则2ah=1设对角线交于O,过O作EFBC分别交AB、CD于E、F三设an是下述自然数N的个数:N的各位数字之和为n且每位数字只能取1、3或4求证:a2n是完全平方数这里,n=1,2,【解析】证明:设N=,其中x1,x2,xk1,3,4且x1+x2+xk=n假定n>4删去xk时,则当xk依次取1,3,4时,x1+x2+xk1分别等于n1,n3,n4故当n>4时, an=an1+an3+an4 a1=a2=1,a3=2,a4=4,利用及初始值可以得到下表:来源:Zxxk.Comn123456789来源:学科网1011121314an11246915254064104169273441规律11212222332355258828131321321212可找到规律: a2(k+1)=a2k+1+a2k1+a2k2=fkfk+1+fk1fk+f= fkfk+1+fk1(fk+fk1)= fkfk+1+fk1fk+1=fk+1(fk1+fk)=fk+1fk+1=f a2(k+1)+1=a2(k+1)+a2k+a2k1 =f+f+fk1fk= f+fk(fk+fk1)= f+fkfk+1=fk+1(fk+1+fk)=fk+2fk+1证明2:(用特征方程)由上证得式,且有a1=a2=1,a3=2,a4=4, 由此得差分方程:431=0 (2+1)(21)=0此方程有根=i,= 令an=in+(i)n+()2+d()2利用初值可以求出an=in+(i)n+()n+2+()n+2 a2n=()n+1()n+12 得a2n=bn=2(1)n+()n +1+()n+1= ()2(n+1)+()2(n+1)2()n+1()n+1 =()n+1()n+12记fn=()n+1()n+1,其特征根为m1,2=故其特征方程为m2m1=0于是其递推关系为fn=fn1+fn2而f0=1,f1=1,均为正整数,从而对于一切正整数n,fn为正整数从而a2n为完全平方数

    注意事项

    本文(91全国高中数学联赛试题及详细解析.docx)为本站会员(小****库)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开