基因工程基础知识复习归纳.doc
. . 基因工程基础知识复习归纳- -日期:- 25 - / 25基因工程复习归纳第一章 绪论1.基因工程的定义:是指按照人们的愿望,经过严密的设计,将一种或多种生物体(供体)的基因与载体在体外进行拼接重组,然后转入另一种生物体(受体/宿主),使之按照人们的意愿稳定遗传、并表达出新的性状的技术。2.基因工程概念的发展:遗传工程DNA重组技术分子/基因克隆(Molecular/Gene基因工程基因操作。应用领域以“基因工程”、“DNA重组”为主基因工程基因工程的历史性事件1973:Boyer和Cohen建立DNA重组技术1978:Genetech公司在大肠杆菌中表达出胰岛素1982:世界上第一个基因工程药物重组人胰岛素上市1988:PCR技术诞生1989:我国第一个基因工程药物rhIFN1b上市2003: 世界上第一个基因治疗药物重组腺病毒-p53上市3.基因工程的三大关键元件基因(供体):外源基因、目的基因载体:能将外源基因带入受体细胞,并能稳定遗传的DNA分子(克隆载体、表达载体)。宿主(受体):,能摄取外源DNA、并能使其稳定维持的细胞(组织、器官或个体)。4.基因工程的基本步骤(切、接、转、增、检(大肠杆菌是中心角色)(1)目的基因的获取:从复杂的生物基因组中,经过酶切消化或PCR扩增等步骤,分离出带有目的基因的DNA片断。(2)重组体的制备:将目的基因的DNA片断插入到能自我复制并带有选择性标记(抗菌素抗性)的载体分子上。(3)重组体的转化:将重组体(载体)转入适当的受体细胞中。(4)克隆鉴定:挑选转化成功的细胞克隆(含有目的基因)。(5)目的基因表达:使导入寄主细胞的目的基因表达出我们所需要的基因产物。第二章 DNA重组克隆的单元操作一、用于核酸操作的工具酶1.限制性核酸切酶(主要存在于原核细菌中,帮助细菌限制外来DNA的入侵)。限制性核酸切酶的功能与类型主要特征I型II型III型功能限切/修饰限切限切/修饰蛋白结构异源三聚体单体异源二聚体辅助因子ATP Mg2+ SAMMg2+ATP Mg2+ SAM识别序列TGAN8TGCTAACN6GTGC旋转对称序列GAGCCCAGCAG切割位点距识别序列1kb处识别序列距识别序列下游24-26bp处其中II型限制性核酸切酶:切割位点专一,适于DNA重组,是DNA重组中最常用工具酶。特点:1.识别、并切割双链DNA分子中特异序列的DNA切酶。2.识别序列为4-6碱基对的回文对称结构(旋转对称结构)。3.单体蛋白、仅有限制性切酶活性,无甲基化酶活性。4.切割产物末端:5突出末端、3突出末端、平头末端.6.最适温度:大多为37,适盐浓度:高盐、中盐、低盐。8.当反应条件不适合时,识别和切割序列发生变化(星号反应)。星活性(star activity):在极端非标准条件下,限制酶能切割与识别序列相似的序列,这个改变的特殊性称星活性。引起星活性的因素: 高浓度甘油(>5%)、 酶过量(>100U/mg)、 低离子强度(<25mM) 高pH (>pH8.0)、 有机溶剂、 用其它二价阳离子代替Mg2+,如Mn2+,Cu2+,Co2+, Zn2+。II型限制性核酸切酶的命名具体规则是:以生物体属名的第一个大写字母和种名的前两个小写字母构成酶的基本名称,如果酶存在于一种特殊的菌株中,则将株名的一个字母加在基本名称之后,若酶的编码基因位于噬菌体(病毒)或质粒上,则还需用一个大写字母表示这些非染色体的遗传因子。酶名称的最后部分为罗马数字,表示在该生物体发现此酶的先后次序。例子:Eschericha(属名)coli(种名)R (质粒)大肠杆菌R质粒EcoRI EcoRVHaemophilus(属名) influenzae(种名) d(株名) 嗜血流感杆菌d株-H i n d IIH i n d III。罗马数字表示同一菌株中所含的多个不同的限制性核酸切酶。特殊性质的II型限制酶:同裂酶,同尾酶同裂酶:又称异源同序酶或异源同工酶,是指识别位点与切割位点均一样的不同来源的酶识别一样序列,如HindIII HsuI: A / AGCTT同尾酶:是指识别位点不同,但切出的片段具有一样的末端序列的一类酶,如BglII:A / GATCT;BamHI: G / GATCC。同尾酶的切割产物互为粘性末端,并能连接,但连接后二个酶的识别序列均被破坏。2.DNA连接酶(T4-DNA连接酶)功能:体外连接片段常用的连接酶: 连接酶参与连接反应的基团:端羟基和端磷酸基团,形成磷酸二酯键DNA连接酶的基本性质 :修复双链DNA上缺口处的磷酸二酯键、修复RNA-DNA杂合分子中DNA链上缺口处的磷酸二酯键、连接多个平头双链DNA分子T4 DNA连接酶的活性单位定义:在 20l 反应体系中于 16 ,使 Hind 切过的 l DNA (300g/ml,0.12M 5' 末端)在 30 分钟连接 50% 所需的酶量为 1 个 NEB 单位。3.DNA聚合酶大肠杆菌DNA聚合酶 I( DNA pol I )基本性质:1. 53的DNA聚合酶活性 2.53的核酸外切酶活性 3.35的核酸外切酶活性大肠杆菌DNA聚合酶 I 的基本用途:1.切口平移标记法 2.Nick translation 3.制备32P标记的探针。所有的DNA聚合酶中只有此酶有该反应。缺口平移标记原理见ppt。大肠杆菌DNA聚合酶 I 大片段( Klenow 酶):大肠杆菌DNA聚合酶I经枯草杆菌蛋白酶处理,获得N端三分之二的大肽段,即为Klenow酶。Klenow酶仍拥有53的DNA聚合酶活性和35的核酸外切酶活性,但失去了53的核酸外切酶活性。Klenow酶的基本用途:1. 补平由核酸切酶产生的5粘性末端 2.DNA片段的同位素末端标记 3.cDNA第二链的合成 4.双脱氧末端终止法测定DNA序列。T4-DNA聚合酶基本特性:1.53的DNA聚合酶活性和35的核酸外切酶活性(极强) 2.在无dNTP时,可以从任何3-OH端外切 3.在四种dNTP均存在时,聚合活性占主导地位基本用途:1.切平由核酸切酶产生的3粘性末端,该酶也能降解双链DNA,只是其活性比单链降解活性低很多。2.DNA片段的同位素末端标记。依赖于RNA的DNA聚合酶(反转录酶)基本用途:1. 以RNA为模板合成cDNA链 2.双向外切DNA-RNA杂合链中的RNA链4.核酸酶单链核酸外切酶:核酸外切酶VII(ExoVII);双链核酸外切酶:核酸外切酶 III(ExoIII);双链核酸外切酶:核酸外切酶(Exo)特异性地从5 端外切;单链核酸切酶:S1核酸酶降解单链DNA的速度比降解双链DNA快75000倍,比降解单链RNA快7倍5核酸修饰酶末端脱氧核苷酰转移酶(TdT);碱性磷酸单酯酶小牛胸腺的碱性磷酸单酯酶(CIP)&大肠杆菌的碱性磷酸单酯酶(BAP);T4-多核苷酸磷酸激酶(T4-PNP)二、用于克隆的载体1. 载体(Vector):是把外源DNA(目的基因)导入宿主细胞,使之传代、扩增或表达的工具。载体应具备的条件: 1.具有针对受体细胞的亲缘性或亲和性(可转移性)2. 具有与特定受体细胞相适应的复制位点或结合位点3. 具有较高的外源DNA的载装能力 4. 具有多种单一的核酸切酶识别切割位点(多克隆位点 ) 5. 具有合适的筛选标记2.载体类型:(1)根据主要用途可以分为:克隆载体和表达载体克隆载体:主要用于在大肠杆菌细胞中克隆目的基因,或在大肠杆菌或酿酒酵母细胞中构建基因文库。克隆载体关键元件:A.多克隆位点 B.筛选标记基因 C.复制起始位点表达载体:除含基因克隆所需元件外,还有供外源基因表达用的启动子、终止子等顺式元件,用于在特定的宿主中表达目的基因。(2)按传代特性分:自主复制型载体:含复制子,可独立于宿主染色体外复制与传代(穿梭载体:装有针对两种不同受体的复制起点,便于基因克隆)。整合型载体:不含复制子,需借助同源重组机制整合于宿主基因组。3.分子克隆载体常用类型:(1)质粒:15kb以下严紧型复制控制的质粒:1 - 5 拷贝,如pSC101松弛型复制控制的质粒:30 - 50 拷贝,如 ColE1氯霉素扩增:在宿主菌生长的中后期,通过添加氯霉素抑制蛋白质合成、关闭主要代途径,以使松弛型质粒 迅速大量扩增(可达上千拷贝)的操作。质粒载体的特点:分子量小,便于操作;易于构建,可作为其他宿主系统载体的骨架;用途广泛;缺点:装载量小(小于10kb),不能用来克隆大片段。重要的大肠杆菌质粒载体:pBR322:松弛型复制;氯霉素可扩增;拷贝数 50 100 / cell;用于基因克隆。还有pUC18/19;T载体,详见ppt,了解一下。实验室一般使用下列三种方法制备质粒DNA: 氯化铯密度梯度离心法:质粒DNA纯度高、周期长、设备要求高、溴乙锭污染;碱裂解法(最常用):质粒DNA纯度、操作周期介于氯化铯法和沸水浴法之间;沸水浴法:质粒DNA纯度底、快速、操作简便。质粒的不相容性的分子机制两种含有相似复制子结构的不同质粒,在复制时受到同一种拷贝数控制系统的干扰,致使两种质粒的最终拷贝数不同,可导致子代细胞质粒组成不同,且这种差异具随机性,经过若干代后宿主细胞中处于数量弱势的质粒必然被淘汰,而仅剩强势质粒。质粒载体不稳定性的类型分离的不稳定性:在细胞分裂过程中发生的质粒不平均的分配,有的细胞没有获得质粒 DN拷贝,并最终增殖成为无质粒的优势群体。结构的不稳定性:由转位作用和重组作用所引起的质粒DN的重排与缺失。 影响质粒载体稳定性的主要因素新代负荷对质粒载体稳定性的效应;拷贝数差度对质粒载体稳定性的影响低差度-稳定 / 高差度-不稳定;寄主重组体系对质粒载体稳定性的效应形成重组质粒二聚体,便会以高出质粒单体分子两倍的速度进行复制,从而导致出现质粒寡聚体的克隆增殖。(2)lamda噬菌体DNA:25kb噬菌体是大肠杆菌的温和型噬菌体,由外壳包装蛋白和l-DNA组成。DNA重组技术一般需要噬菌体进入溶菌状态-DNA是线性双链DNA分子,全长48502个核苷酸。-DNA两端各带有一个12bp的粘性末端,称为cos位点。噬菌体感染细菌以后,双链DNA分子通过COS位点成环状。插入型载体:改造后的长度正好为包装的下限,因而本身也能被包装,叫插入型载体1.cI基因失活:cI基因失活后将导致噬菌体不能溶原化,产生清晰的噬菌斑。相反,产生混浊的噬菌斑。2. Lac Z基因插入失活:在lac Z基因上有EcoR I位点,插入失活后利用X-gal法筛选(蓝白筛选)。 取代型载体:长度为40kb,在非必需区域有酶切位点,距离为14kb。载量为10-25kb。用取代型载体克隆外源DNA可能需要经过哪些步骤?第一,应用适当的核酸切限制酶消化载体,除去基因组中可取代的DNA区段。第二,将上述所得的 DNA臂同外源DNA片段连接。第三,对重组体的DN A分子进行包装和增殖,以得到有感染性的重组噬菌体。-DNA重组分子需在体外人工包装成有感染力的噬菌体重组颗粒,方可高效导入受体细胞。-DNA作为载体的优点:1. -DNA可在体外包装成噬菌体颗粒,能高效转染大肠杆菌2. -DNA载体的装载能力为25 kb,远远大于质粒的装载量 3.重组l-DNA分子的筛选较为方便4. 重组-DNA分子的提取较为简便5. -DNA载体适合克隆和扩增外源DNA片段,但不适合表达外源基因。cos质粒:lamda DNA的cos区和质粒组成的载体: 31-45 kb(3)考斯质粒载体的特点:1.能像-DNA那样进行体外包装,并高效转染受体细胞2.能像质粒那样在受体细胞中自主复制 3. 重组操作简便,筛选容易 4. 装载量大(45 kb)且克隆片段具有一定的大小围 5. 不能体包装,不裂解受体细胞.(4)人工染色体载体人工染色体实际上是一种“穿梭”克隆载体:含有质粒克隆载体所必备的第一受体(大肠杆菌)源质粒复制起始位点(ori),还含有第二受体(如酵母菌)染色体DNA着丝点、端粒和复制起始位点的序列,以与合适的选择标记基因。细菌人工染色体(BAC):50-300kb,主要用于基因文库构建易于发生重组、缺乏稳定性、制备工艺繁琐 酵母人工染色体(YAC): 350-400kb,主要用于基因文库构建克隆大型基因簇(gene cluster)结构&构建动植物基因文库三、用于基因转移的受体菌或细胞(1)受体(宿主)应具备的条件1.限制性缺陷型外切酶和切酶活性缺陷(hsdR-) 2. 重组整合缺陷型用于基因扩增或高效表达的受体细胞(recA- , recB-,recC- )3. 具有较高的转化效率 4. 具有与载体选择标记互补的表型 5. 感染寄生缺陷型防止重组细菌扩散污染,生物武器除外。(2)各种基因工程受体(宿主)的特性A. 大肠杆菌遗传背景清楚,载体受体系统完备,生长迅速,培养简单,重组子稳定。适用于外源DNA的扩增和克隆、基因文库的构建和外源基因的高效表达,是DNA重组实验和基因工程的主要受体菌。产生结构复杂、种类繁多的毒素。B. 枯草芽孢杆菌遗传背景清楚,蛋白质分泌机制健全,生长迅速,培养简单,不产毒素。遗传欠稳定,载体受体系统欠完备。适用于重组蛋白与多肽、特别是微生物来源的酶的高效分泌表达。C.链霉菌抗生素的主要生产者,相对操作简便,不产毒素。遗传不稳定,生长相对缓慢。主要用于抗生素生产菌株的改良。D. 酵母菌具有真核生物的特征,遗传背景清楚,生长迅速,培养简单,外源基因表达系统完善,遗传稳定。源性蛋白产物种类繁多且含量高。适用于外源DNA的扩增、克隆以与真核生物基因的高效表达、基因文库的构建、真核生物基因表达调控的研究,是DNA重组实验和基因工程重要的真核性受体菌。E. 昆虫细胞(家蚕,杆状病毒表达系统)具有真核生物的特征,外源基因表达量高,繁殖相对较快,培养成本低廉,遗传稳定。DNA重组操作系统欠完善。适用于真核生物基因的高效表达。F. 哺乳动物细胞(中国仓鼠卵巢细胞 CHO)与人的亲缘关系近,表达系统完善,具有合适的糖基化修饰系统。细胞培养条件苛刻,生长缓慢。适用于哺乳类动物和人的基因表达调控研究、基因药物的生产,是DNA重组实验和基因工程的主要哺乳动物受体。G . 植物细胞(拟南芥菜、烟叶) 农作物的经济意义重大,转基因植物细胞易于分化,细胞培养简单且成本低廉,具有光合作用。遗传操作繁琐。适用于高等植物基因表达调控的研究、基因药物的生产,农作物品质的改良。实验室常用的基因工程受体(宿主):大肠杆菌;真菌:酵母菌(毕赤酵母,汉森酵母,啤酒酵母)&丝状真菌(黑曲霉、青霉);哺乳动物细胞 CHO(3)大肠杆菌转化常用方法感受态(compentent ):受体(宿主)细胞经过一些理化或生物学方法处理后,细胞膜的通透性发生暂时性的改变,成为能允许外源DNA进入的一种生理状态。感受态细胞(compentent cell )CaCl2法原理Ca2+诱导的完整细胞的转化适用于革兰氏阴性细菌(如大肠杆菌等),1970年建立此技术,其原理是Ca2+与细菌外膜磷脂在低温下形成液晶结构,转化混合物中的DNA与其形成抗Dnase的羟基-钙磷酸复合物黏附于细胞表面,后者经热脉冲发生收缩作用,使细胞膜出现空隙,细菌细胞此时的状态即为感受态。具体大肠杆菌感受态细胞的制备与质粒转化详见ppt。电转化法热激法转化率的定义:每微克DNA分子转化宿主菌能获得的转化子数。例如,pUC18对大肠杆菌的转化率为108,即每微克pUC18中只有108个分子能进入受体细胞。一微克pUC18共有3.4X1011个分子(6.02X1017 / 2686X660),也就是说,每3400个pUC18分子才有一个分子进入受体细胞。 另一方面,在实际操作过程中,转化一微克pUC18共需2ml感受态细胞,大约含有2X1010个大肠杆菌细胞,也就是说,每200个细胞只有一个细胞能接纳pUC18 DNA。不同转化方法转化率:Ca2+诱导转化106 107 / mg DNA 原生质体转化105 106 / mg DNA -DNA转染107- 108 / mg DNA 电穿孔转化106 109 / mg DNA 转化子的筛选和鉴定(检)由于重组率和转化率不可能达到理想极限,因此必须借助各种筛选和鉴定方法区分转化子与非转化子、重组子与非重组子、目的重组子与非目的重组子。转化子筛选和鉴定流程1、筛选选择性平板筛选2、重组子初步鉴定显色、PCR、比大小、酶切、分子杂交、生物/免疫学活性3、重组子确证DNA序列分析4、外源基因表达产物检测仅当外源基因克隆于特定表达载体和宿主中时才需要。常规基因克隆则否。转化子筛选方法:抗药性筛选法;营养缺陷型筛选法;显色筛选法lacZ基因(蓝色反应)、链霉菌质粒pIJ702携带的melC基因(黑色反应)等;DNA电泳检测直接电泳检测法;限制性酶切图谱法;PCR扩增检测法;原位杂交法(高通量筛选);DNA序列分析双脱氧末端终止测序法;外源基因表达产物检测法聚丙烯酰胺凝胶电泳法(SDS-PAGE);酶联免疫吸附法ELISA;免疫印记(Western blotting);蛋白质生物功能测定法(高通量筛选)淀粉酶基因;原位免疫沉淀法(高通量筛选);放射免疫原位杂交鉴定四、基因克隆基因文库:从特定生物个体中分离的全部基因,这些基因以克隆的形式存在(人工构建)。根据构建方法的不同,基因文库分为:基因组文库(含有全部基因)&cDNA文库(含有全部蛋白质编码的结构基因)。在高度分化的生物体中cDNA文库的信息量远小于基因组文库基因克隆常用方法:鸟枪法基本策略:染色体DNA的切断:超声波处理片段长度均一,大小可控,平头末端;全酶切片段长度不均一,粘性末端便于连接,但有可能使目的基因断开,大小不可控;部分酶切片段长度可控,含有粘性末端,目的基因完整。与载体连接:如果转化子采用菌落原位杂交法或限制性酶切图谱法筛选,则选择多拷贝克隆载体;如果转化子采用基因产物功能检测法筛选,则选择表达型载体。转化受体细胞如果转化子采用菌落原位杂交法或限制性酶切图谱法筛选,则选择大肠杆菌作为受体细胞;如果转化子采用基因产物功能检测法筛选,则选择能使目的基因表达的受体细胞。筛选含有目的基因的目的重组子:菌落原位杂交法、基因产物功能检测法(筛选模型的建立)。cDNA法基本策略:cDNA第一链的合成cDNA第二链的合成(自身引导法、置换合成法、引导合成法、)/双链cDNA的克隆离目的基因(完备分离程序、特异分离程序、差异分离程序)PCR法使用PCR法克隆目的基因的前提条件是:已知待扩增目的基因或DNA片段两侧的序列,根据该序列化学合成聚合反应必需的双引物基本策略:由Taq DNA聚合酶扩增的PCR产物中,其3末端总是会带有一个非模板依赖型的突出碱基,而且这个碱基几乎总是A,因为Taq DNA聚合酶对dATP具有优先聚合活性。由于该突出碱基的存在,克隆时即可以采取TdT末端加同聚尾的方法与载体拼接,也可以使用专门的T载体克隆。化学合成法(全基因合成)基因文库的完备性是指:在构建的基因文库中任一基因存在的概率,它与基因文库最低所含克隆数N之间的关系可用下式表示:N = ln ( 1 P ) / ln ( 1 f )其中: P = 任一基因被克隆(或存在于基因文库中)的概率,f = 克隆片段的平均大小 / 生物基因组的大小。基因文库的构建程序1.基因组DNA的制备:2.基因组DNA的切割:用于基因组文库构建的DNA片段的切割一般采用超声波处理和制性限切酶部分酶切两种方法,其目的是:第一,保证DNA片段之间存在部分重叠区;第二,保证DNA片段大小均一。连接前,上述处理的DNA片段必须根据载体的装载量进行分级分离,以杜绝不相干的DNA片段随机连为一体3.载体和受体的选择:出于压缩重组克隆的数量,用于基因组文库构建的载体通常选装载量较大的-DNA或考斯质粒;对于大型基因组(如动植物和人类)需使用YAC或BAC载体。cDNA文库构建的载体通常选质粒;用于基因文库构建的受体则根据载体使用大肠杆菌或酵母菌。4.从基因文库中筛选目的基因:可以采用特殊的正选择筛选程序(如抗药性筛选法、酵母双杂交技术等)直接筛选外,一般的基因组文库筛选均需多轮操作步骤。原位杂交法。第三章 大肠杆菌基因工程一、大肠杆菌表达(生产)系统的优缺点大肠杆菌表达系统的优点1.遗传背景清楚(4405个ORF),便于基因操作 2.表达水平高,遗传较稳定3.优良的工业性能:繁殖迅速、培养简单、操作方便 4.被美国FDA认定为安全的重组药物生产系统大肠杆菌表达系统的缺点1. 缺乏翻译后修饰加工系统(不能表达糖基化蛋白、结构复杂的蛋白等)2.胞缺乏高效的表达产物折叠机制(形成包涵体),分泌机制不完善 3.细胞周质含有种类繁多的毒素二、大肠杆菌系统高效表达原理大肠杆菌系统表达载体的基本元件A、目的基因:编码外源蛋白的结构基因 B、转录元件:启动子、终止子C、翻译元件:核糖体结合位点、翻译起始位点D、克隆元件:克隆位点、复制原点、标记基因E、翻译后元件(非必须) :信号肽、融合肽外源基因在大肠杆菌中高效表达原理A、启动子 (Promoter)是DNA链上一段能与RNA聚合酶结合并能起始RNA合成的序列。是基因表达最关键和最强的表达调控元件,启动子的强弱对表达水平有决定性影响。(没有启动子,基因就不能转录)。启动子有种属特异性(如真核的在原核宿主中无效),有组成型(组成型表达系统)和诱导型(诱导型表达系统)二大类。原核基因启动子是由两段彼此分开且又高度保守的核苷酸序列组成:(1)Pribnow盒,位于转录起始位点上游510bp,一般由68个碱基组成,富含A和T,故又称为TATA盒或10区。(2)35区,位于转录起始位点上游35bp处,故称35区,一般由10个碱基组成。常用原核基因启动子:lac (乳糖启动子);trp (色氨酸启动子);tac(乳糖和色氨酸的杂合启动子Ptac = Ptrp 的-35区+ Plac的-10区);T7启动子IPTG诱导;PL和PR(噬菌体的左向和右向启动子)温控(热诱导),30/37培养, 42诱导。T7启动子最成功的启动子 A.强大的 T7 启动子完全专一受控于 T7 RNA 聚合酶,B.T7 RNA 聚合酶合成 mRNA 的速度比大肠杆菌RNA 聚合酶的快 5 倍 C.由于大肠杆菌本身不含 T7 RNA 聚合酶 ,需要将外源的 T7 RNA 聚 合酶引入宿主菌(采用DE3溶源菌,T7RNA聚合酶置于LacUV5启动子控制下,IPTG间接诱导)。B、终止子转录过头现象:A.RNA聚合酶滑过终止子结构继续转录质粒上邻近的 B.DNA序列,形成长短不一的mRNA混合物。防止转录过头策略:A、采用强终止子大肠杆菌rRNA操纵子上的rrnT1T2T7&噬菌体DNA上的TB、二聚体终止子串联的特殊结构C、核糖体结合位点(RBS) mRNA 5端非翻译序列,包括SD、起始密码子、SD与起始密码子间的序列、起始密码子下游序列。SD序列(Shine-Dalgarno):位于翻译起始密码子上游的6-8个核苷酸序列(5UAAGGAGG 3),它通过识别大肠杆菌核糖体小亚基中的16S rRNA 3端区域3AUUCCUCC 5并与之专一性结合,将mRNA定位于核糖体上,从而启动翻译。D、质粒拷贝数策略:较低拷贝质粒(几个至数十个)& 调控重组质粒的扩增E密码子满足宿主对密码子偏爱性的策略:外源基因全合成 & 同步表达相关tRNA编码基因三、大肠杆菌工程菌的构建策略1、包涵体型异源蛋白的表达包涵体:胞高效表达时,工程菌因大量合成异源蛋白质所形成的水不溶性积聚物。性质:致密(密度大于细胞碎片和所有细胞器)、还含有标记蛋白、RNA聚合酶和少量的DNA、RNA和脂多糖等非蛋白分子。裸露或被膜包裹。包涵体形成原因:大肠杆菌细胞呈“还原”型环境,不不利于二硫键的形成,当高效表达时,新合成肽形成二硫键的速度和折叠效率跟不上合成速度。表达产物结构形式:a)部分属于折叠过程中的产物;b)部分为无序卷曲与聚集,分子二硫键错配; c)分子间存在大量错配二硫键。以包涵体形式表达目的蛋白的优缺点包涵体表达形式的优点:、便于表达产物分离包涵体的水难溶性与其密度远大于其它细胞碎片和细胞成分,菌体经超声波裂解后,直接通过高速离心即可将重组异源蛋白从细菌裂解物中分离出来、利于表达产物在宿主细胞稳定存在在形成包涵体之后,大肠杆菌的蛋白酶降解作用基本上对异源重组蛋白的稳定性已构不成威胁包涵体表达形式的缺点:以包涵体形式表达的重组蛋白丧失了原有的生物活性,必须通过有效的变性复性操作,才能回收得到具有正确空间构象(因而具有生物活性)的目标蛋白,因此包涵体变复性操作的效率对目标产物的收率至关重要。然而,这也是一个技术难题,尤其当目标蛋白分子中的Cys残基数目较高时,体外复性蛋白质的成功率相当低,一般不超过30%。包涵体的溶解与变性包涵体的溶解与变性的主要任务是拆开错配的二硫键和次级键在人工条件下,使包涵体溶解并重新进入复性途径中。常采用高浓度变性剂:8M尿素、6MGuC打开各种次级键,以DTT等巯基试剂打开二硫键。能有效促进包涵体溶解变性的试剂和条件包括:促溶剂最常用, 盐酸胍、尿素,前者昂贵,尿素便宜,但常被自发形成的氰酸盐污染,后者能与多肽链中的氨基反应表面活性剂SDS、正十二醇肌氨酸,廉价,但影响复性和纯化混合溶剂 如尿素与醋酸、二甲基砜等联合使用,溶解力增强极端pH 廉价,但许多蛋白质在极端pH条件下发生修饰反应包涵体的复性与重折叠:二硫键形成(将多肽链中被拆开的游离巯基氧化重新形成二硫键(关键);通过次级键的形成使蛋白质重折叠形成二硫键的方式主要有:A化学氧化法需要电子受体,最廉价的电子受体为空气,二硫键形成是随机的,仅适用于那些不含游离半胱氨酸残基的蛋白质的重折叠 B二硫键交换需要还原型和氧化型谷胱甘肽(GSH和GSSG),二硫键形成相对特异,因此适用性较广,重折叠效果好包涵体复性操作的方法:缓慢降低变性剂浓度,并尽量减低蛋白浓度。详见老师ppt。包涵体的复性与重折叠的主要挑战是:聚集沉淀2、融合型异源蛋白的表达以融合形式表达目的蛋白的优缺点目的蛋白稳定性高 尤其对分子量较小的多肽效果更佳目的蛋白易于分离 利用受体蛋白成熟的抗体、配体、底物进行亲和层析,可以快速获得纯度较高的融合蛋白目的蛋白表达率高 与受体蛋白共用一套完善的表达元件目的蛋白溶解性好 由于受体蛋白的存在,融合蛋白往往能在胞形成良好的空间构象,且大多具有水溶性缺点:融合蛋白需要裂解和进一步分离,才能获目的蛋白。在实际生产中,产品主要的成本往往就在该工段用于融合蛋白构建的Tag(5种)A、His6 易于亲和层析、不影响目的蛋白结构、无免疫原性 B、谷胱甘肽转移酶(GST) 维持良好空间构象 C、硫氧化还原蛋白(TrxA) 维持良好空间构象 pTrxFus D、麦芽糖结合蛋白(MBP) 促进分泌 E、含肽(Intein):类似含子的多肽,与目的能蛋白融合表达,在表达后可进行自剪接,兼有蛋白酶和蛋白连接酶的特性。4、DTT条件下切割。目的蛋白的回收化学裂解法-溴化氰(CNBr)法原理: CNBr与Met的硫醚基反应,生成高丝氨酸(HMS)残基留于上游肽段C端基因操作:在二个多肽基因融合处设置Met的密码子酶促裂解法原理:利用蛋白酶的专一性识别残基与位点切开融合肽基因操作:在二个多肽基因融合处设置蛋白酶识别残基的密码子常用多残基识别位点蛋白酶Thrombin(凝血酶)Leu-Val-Pro-ArgGly-SerEnterokinase(肠激酶)Asp-Asp-Asp-Asp-LysFactor Xa (X因子)Ile-Glu/Asp-Gly-ArgPreScission(5切割!GE)Leu-Glu-Val-Leu-Phe-GlnGly-Pro TEV protease(Invitrogen)Glu-Asn-Leu-Tyr-Phe-GlnGlyIntein(含肽,自切割,NEB)dithiothreitol cleavage !3、分泌型异源蛋白的表达蛋白质的分泌机制A、 在信号肽牵引下跨膜,进入周质腔;B、信号肽酶切下信号肽,释放目的蛋白于周质腔。以分泌形式表达目的蛋白的优缺点A、分泌表达形式的优点:目的蛋白以呈正确折叠的可溶形式存在(周质为氧化型环境,利于二硫键形成)目的蛋白稳定性高(周质腔蛋白酶少)目的蛋白末端完整 相当多的真核生物成熟蛋白N端并不含有的甲硫氨酸残基便可在信号肽的剪切过程中被有效除去B分泌表达形式的缺点:相对其它生物细胞而言,大肠杆菌的蛋白分泌机制并不健全。外源真核生物基因很难在大肠杆菌中进行分泌型表达,少数外源基因即便能分泌表达,但其表达水平通常要比包涵体方式低很多,因此目前用于产业化的异源蛋白分泌型重组大肠杆菌尽管有,但并不普遍。主要用于实验室小规模制备。4、寡聚型异源蛋白的表达以寡聚形式表达目的蛋白的优缺点 稳定表达小分子短肽短肽由于缺乏有效的空间结构,易受蛋白酶攻击,易降解,串联短肽具有与蛋白质相似的长度与空间结构,可抗蛋白酶降解。目的蛋白高效表达在不提高质粒拷贝数的前提下,增加目的基因的拷贝数目的产物回收困难四、工程菌构建、分析、发酵与产物分离纯化(1)工程菌构建与分析(2)工程菌遗传稳定性分析 在非选择条件下连续传代数代后,对工程菌重组质粒存在状况、结构完整性和功能完整性进行一下三项分析: A、存在状况:宏观逃逸率 B、结构完整性:酶切图谱分析、序列分析 C、功能完整性:表达水平工程菌遗传不稳定性的表现形式分配不稳定性(主要):整个重组DNA分子从受体细胞中逃逸(curing)结构不稳定性:重组DNA分子上某一区域发生缺失、重排、修饰,导致其表观生物学功能的丧失重组质粒的逃逸:工程菌部分细胞因质粒丢失而不再携带重组质粒的现象。重组质粒逃逸的原因目的基因本底表达产物引起的毒性反应关闭质粒DNA合成途径,启动降解程序目的基因高效表达诱导宿主细胞产生应激反应抗性标记基因过表达,抗生素消耗过快。目的基因表达盒“转录过头”,影响Ori区域。环境因素诱导的重组质粒渗漏高温、表面活性剂(SDS)、药物(利福平)、染料(吖啶)重组质粒的宏观逃逸率:工程菌培养液中丢失质粒的细胞占细胞总数的百分比。 宏观逃逸率(%)=(非选择性平板菌落数选择性平板菌落数)/非选择性平板菌落数×100(3)发酵工艺研究工程菌生长与表达主要影响因素1、培养基:影响菌体生长、质粒稳定性、表达水平、产物可溶性等碳源:葡萄糖、甘油、乳糖、甘露糖、果糖等应避免外源基因表达的“葡萄糖效应”。氮源:有机氮:酵母提取物、蛋白胨、酪蛋白水解物、玉米浆无机氮:氨水、硫酸铵、硝酸铵、氯化铵等其他:无机盐、微量元素维生素、生物素等2、菌龄与接种量菌龄:自接种起培养的时间(小时) 影响停滞期、质粒宏观逃逸率接种量:是指接入的种子液体积占培养液体积的百分比 过小:延长菌体停滞期,质粒宏观逃逸率高过大:菌体生长过快,代产物积累过多,抑制后期菌体的生长,降低表达水平。3、pH值、温度与溶解氧pH值:影响生长速度、表达水平和产物可溶性。生长最适pH围在6.8-7.4,表达最适pH为6.0-6.5温度:影响生长速度、表达水平和产物可溶性。生长最适37,较低温度利于可溶表达。溶解氧:影响生长速度和表达水平4、诱导时机与收菌时机诱导时机:过早影响生物量、过晚影响表达水平。一般在生长曲线对数中期或对数后期进行诱导收菌时机:过早影响表达水平、过晚影响产物稳定性、可溶性、并造成浪费。一般在表达曲线平台期(诱导后3-4小时)收菌工程菌摇瓶水平生长与表达试验主要研究参数:培养基、接种量、pH值、温度、诱导与收菌时机等主要观察指标: 表达水平(%)、生物量、表达产物积累(包涵体形成)情况、质粒宏观逃逸率等结果:生长曲线与表达曲线(4)工程菌工业发酵工艺研究工程菌发酵工艺基本要求与重点问题:基本要求:高表达、高生物量、便于放大、低成本重点问题:1)质粒稳定性问题2)表达与生长的矛盾问题(诱导时机)3)发酵方式问题:分批式or流加式发酵?常规发酵or高密度发酵?发酵方式: 1)批式发酵:较常用,高表达、但菌体量较少。 2)流加发酵:较常用,主要补充碳源,菌体量大、表达水平下降,碳源流加时机和速度是关键。高密度发酵:无机盐介质,通过碳源限制和流加实现高密度发酵。 3)连续发酵:少用,高表达、高总生物量、难控制。 工程菌工业发酵工艺流程(如图所示):(5)表达产物分离纯化工艺研究表达产物分离纯化原则:1)要建立一个方便灵敏的蛋白检测方法,以估价每一步的提纯程度;2)分离步骤要尽可能少,每一步便于工业放大;3)尽量采用柱层析技术,各步骤间样品应无需复杂处理;4)初步分离要快速、大规模,精纯要高分辨率;5)尽可能避免带入有害物质;6)每步需统计:得率、纯度、纯化倍数分离提纯有三步策略:粗提、中度纯化、精细纯化以下是粗提的图示第四章 非肠道原核细菌基因工程芽孢杆菌基因工程1、芽孢杆菌表达系统的优、缺点优点:1、强大的分泌功能:如蛋白酶、淀粉酶,20g/L2、不形成包涵体,产物可正确折叠 3、非病原菌,无毒素和外毒素,被美国FDA认定为GRAS(总体安全)系统 4、容易操作,背景清楚 5、易于培养、生长旺盛缺点:同