概率与统计知识点全归纳.docx
概率与统计知识点全归纳1随机抽样(1)简单随机抽样:一般地,设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(nN),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样(2)分层抽样:一般地,在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是一种分层抽样2用样本的频率分布估计总体分布(1)在频率分布直方图中,纵轴表示频率/组距,数据落在各小组内的频率用各小长方形的面积表示各小长方形的面积总和等于1.(2)频率分布折线图和总体密度曲线频率分布折线图:连接频率分布直方图中各小长方形上端的中点,就得到频率分布折线图总体密度曲线:随着样本容量的增加,作图时所分的组数增加,组距减小,相应的频率折线图会越来越接近于一条光滑曲线,即总体密度曲线(3)茎叶图茎是指中间的一列数,叶是从茎的旁边生长出来的数3用样本的数字特征估计总体的数字特征(1)众数:一组数据中出现次数最多的数(2)中位数:将数据从小到大排列,若有奇数个数,则最中间的数是中位数;若有偶数个数,则中间两数的平均数是中位数(3)平均数:,反映了一组数据的平均水平(4)标准差:是样本数据到平均数的一种平均距离,s.(5)方差:s2(x1)2(x2)2(xn)2(xn是样本数据,n是样本容量,是样本平均数)4概率和频率(1)在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数nA为事件A出现的频数,称事件A出现的比例fn(A)为事件A出现的频率(2)对于给定的随机事件A,由于事件A发生的频率fn(A)随着试验次数的增加稳定于概率P(A),因此可以用频率fn(A)来估计概率P(A)5事件的关系与运算定义符号表示包含关系若事件A发生,事件B一定发生,则称事件B包含事件A(或称事件A包含于事件B)BA(或AB)相等关系若BA且AB,则称事件A与事件B相等AB并事件(和事件)若某事件发生当且仅当事件A发生或事件B发生,则称此事件为事件A与事件B的并事件(或和事件)AB(或AB)交事件(积事件)若某事件发生当且仅当事件A发生且事件B发生,则称此事件为事件A与事件B的交事件(或积事件)AB(或AB)互斥事件AB为不可能事件,则称事件A与事件B互斥AB对立事件若AB为不可能事件,AB为必然事件,则称事件A与事件B互为对立事件AB且P(AB)P(A)P(B)16.概率的几个基本性质(1)概率的取值范围:0P(A)1. (2)必然事件的概率P(E)1.(3)不可能事件的概率P(F)0.(4)概率的加法公式:如果事件A与事件B互斥,则P(AB)P(A)P(B)(5)对立事件的概率:若事件A与事件B互为对立事件,则P(A)1P(B)7古典概型具有以下两个特点的概率模型称为古典概率模型,简称古典概型:高中数学资料共享群(734924357)(1)试验中所有可能出现的基本事件只有有限个;(2)每个基本事件出现的可能性相等8古典概型的概率公式P(A).9相关关系与回归方程(1)相关关系的分类正相关:在散点图中,点散布在从左下角到右上角的区域,对于两个变量的这种相关关系,我们将它称为正相关负相关:在散点图中,点散布在从左上角到右下角的区域,两个变量的这种相关关系称为负相关(2)线性相关关系:如果散点图中点的分布从整体上看大致在一条直线附近,就称这两个变量之间具有线性相关关系,这条直线叫做回归直线(3)回归方程最小二乘法:求回归直线,使得样本数据的点到它的距离的平方和最小的方法叫做最小二乘法回归方程:方程x是两个具有线性相关关系的变量的一组数据(x1,y1),(x2,y2),(xn,yn)的回归方程,其中,是待定参数(4)回归分析定义:对具有相关关系的两个变量进行统计分析的一种常用方法样本点的中心对于一组具有线性相关关系的数据(x1,y1),(x2,y2),(xn,yn),其中(,)称为样本点的中心相关系数当r>0时,表明两个变量正相关;当r<0时,表明两个变量负相关高中数学资料共享群(734924357)r的绝对值越接近于1,表明两个变量的线性相关性越强r的绝对值越接近于0,表明两个变量之间几乎不存在线性相关关系通常|r|大于0.75时,认为两个变量有很强的线性相关性10独立性检验(1)分类变量:变量的不同“值”表示个体所属的不同类别,像这样的变量称为分类变量(2)列联表:列出的两个分类变量的频数表,称为列联表假设有两个分类变量X和Y,它们的可能取值分别为x1,x2和y1,y2,其样本频数列联表(称为22列联表)为22列联表y1y2总计x1ababx2cdcd总计acbdabcd构造一个随机变量K2,其中nabcd为样本容量(3)独立性检验利用随机变量K2来判断“两个分类变量有关系”的方法称为独立性检验11.分类加法计数原理与分步乘法计数原理一般形式区别分类加法计数原理完成一件事有n类不同方案,在第1类方案中有m1种不同的方法,在第2类方案中有m2种不同的方法,在第n类方案中有mn种不同的方法,那么完成这件事共有Nm1m2mn种不同的方法分类加法计数原理与分步乘法计数原理,都涉及完成一件事情的不同方法种数它们的区别在于:分类加法计数原理与分类有关,各种方法相互独立,用其中的任何一种方法都可以完成这件事;分步乘法计数原理与分步有关,各个步骤相互依存,只有各个步骤都完成了,这件事才算完成分步乘法计数原理完成一件事需要n个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法,做第n步有mn种不同的方法,那么完成这件事共有Nm1m2mn种不同的方法12排列、组合的定义排列的定义从n个不同元素中取出m(mn)个元素按照一定的顺序排成一列组合的定义合成一组13排列数、组合数的定义、公式、性质排列数组合数定义从n个不同元素中取出m(mn)个元素的所有不同排列的个数从n个不同元素中取出m(mn)个元素的所有不同组合的个数公式An(n1)(n2)(nm1)C性质An!,0!1CnC,CCC1,C1,C114二项式定理二项式定理(ab)nCanCan1b1CankbkCbn(nN*)二项展开式的通项公式Tk1Cankbk,它表示第k1项二项式系数二项展开式中各项的系数C,C,C15.二项式系数的性质(1)C1,C1,CCC. CC(0mn)(2)二项式系数先增后减中间项最大高中数学资料共享群(734924357)当n为偶数时,第1项的二项式系数最大,最大值为,当n为奇数时,第项和第项的二项式系数最大,最大值为或.(3)各二项式系数和:CCCC2n,CCCCCC2n1.16离散型随机变量的分布列(1)随着试验结果变化而变化的变量称为随机变量所有取值可以一一列出的随机变量称为离散型随机变量(2)一般地,若离散型随机变量X可能取的不同值为x1,x2,xi,xn,X取每一个值xi(i1,2,n)的概率P(Xxi)pi,则称表Xx1x2xixnPp1p2pipn为离散型随机变量X的概率分布列,简称为X的分布列,具有如下性质:pi0,i1,2,n;p1+p2+pn=1.离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率之和17两点分布如果随机变量X的分布列为X01P1pp其中0<p<1,则称离散型随机变量X服从两点分布其中pP(X1)称为成功概率高中数学资料共享群(734924357)18离散型随机变量的均值与方差一般地,若离散型随机变量X的分布列为Xx1x2xixnPp1p2pipn(1)均值称E(X)x1p1x2p2xipixnpn为随机变量X的均值或数学期望它反映了离散型随机变量取值的平均水平(2)方差称D(X)i=1nxiE(X)2pi为随机变量X的方差,它刻画了随机变量X与其均值E(X)的平均偏离程度,并称其算术平方根为随机变量X的标准差19均值与方差的性质(1)E(aXb)aE(X)b.(2)D(aXb)a2D(X)(a,b为常数)20超几何分布一般地,在含有M件次品的N件产品中,任取n件,其中恰有x件次品,则P(Xk) (k0,1,2,m),即X01mP其中mminM,n,且nN,MN,n,M,NN*.如果一个随机变量X的分布列具有上表的形式,则称随机变量X服从超几何分布21条件概率及其性质(1)对于任何两个事件A和B,在已知事件A发生的条件下,事件B发生的概率叫做条件概率,用符号P(B|A)来表示,其公式为P(B|A)(P(A)>0)在古典概型中,若用n(A)表示事件A中基本事件的个数,则P(B|A).(2)条件概率具有的性质0P(B|A)1;如果B和C是两个互斥事件,则P(BC|A)P(B|A)P(C|A)22相互独立事件(1)对于事件A,B,若事件A的发生与事件B的发生互不影响,则称事件A,B是相互独立事件(2)若A与B相互独立,则P(B|A)P(B)(3)若A与B相互独立,则A与,与B,与也都相互独立(4)P(AB)P(A)P(B)A与B相互独立23独立重复试验与二项分布(1)独立重复试验是指在相同条件下可重复进行的,各次之间相互独立的一种试验,在这种试验中每一次试验只有两种结果,即要么发生,要么不发生,且任何一次试验中发生的概率都是一样的(2)在n次独立重复试验中,用X表示事件A发生的次数,设每次试验中事件A发生的概率为p,则P(Xk)Cpk(1p)nk(k0,1,2,n),此时称随机变量X服从二项分布,记为XB(n,p),并称p为成功概率24两点分布与二项分布的均值、方差(1)若随机变量X服从两点分布,则E(X)p,D(X)p(1p)(2)若XB(n,p),则E(X)np,D(X)np(1p)25正态分布(1)正态曲线:函数,(x),x(,),其中实数和为参数(>0,R)我们称函数,(x)的图象为正态分布密度曲线,简称正态曲线(2)正态曲线的特点曲线位于x轴上方,与x轴不相交;曲线是单峰的,它关于直线x对称;曲线在x处达到峰值;曲线与x轴之间的面积为1;当一定时,曲线的位置由确定,曲线随着的变化而沿x轴平移,如图甲所示;当一定时,曲线的形状由确定,越小,曲线越“瘦高”,表示总体的分布越集中;越大,曲线越“矮胖”,表示总体的分布越分散,如图乙所示(3)正态总体在三个特殊区间内取值的概率值P(<X)0.682 7;P(2<X2)0.954 5;P(3<X3)0.997 3.