2021届高考数学二轮复习 推理与证明限时规范训练 理.DOC
-
资源ID:43121293
资源大小:87KB
全文页数:6页
- 资源格式: DOC
下载积分:8金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2021届高考数学二轮复习 推理与证明限时规范训练 理.DOC
小题精练(二十一)推理与证明(限时:60分钟)1观察下列各式:ab1,a2b23,a3b34,a4b47,a5b511,则a10b10()A28B76C123D1992(2014·辽阳模拟)已知数列an的前n项和Snn2an(n2),而a11,通过计算a2,a3,a4,猜想an等于()A.B.C.D.3(2013·高考湖南卷)已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积不可能等于()A1B.C.D.4定义一种运算“*”:对于自然数n满足以下运算性质:()1*11,()(n1)*1n*11,则n*1等于()AnBn1Cn1Dn25数列an满足:a13,an(n2,nN*),则数列的通项公式an等于()A.B.C.D.6观察下列各式:553 125,5615 625,5778 125,则52 014的末四位数字为()A3 125B5 625C0 625D8 1257(2014·深圳市模拟)函数yf(x),xD,若存在常数C,对任意的x1D存在唯一的x2D使得C,则称函数f(x)在D上的几何平均数为C.已知f(x)x3,x1,2,则函数f(x)x3在1,2上的几何平均数为()A.B2C4D28(2014·石家庄市模拟)已知数列an:,依它的前10项的规律,则a99a100的值为()A.B.C.D.9若直角坐标平面内的两个不同点M、N满足条件:M、N都在函数yf(x)的图象上;M、N关于原点对称,则称点对M,N为函数yf(x)的一对“友好点对”(注:点对M,N与N,M为同一“友好点对”)已知函数f(x),此函数的“友好点对”有()A0对B1对C2对D3对10把正整数按一定的规则排成了如图所示的三角形数表设aij(i,jN*)是位于这个三角形数表中从上往下数第i行、从左往右数第j个数,如a428.若aij2 013,则i与j的和为()A106B107C108D10911(2013·高考天津卷)已知下列三个命题:若一个球的半径缩小到原来的,则其体积缩小到原来的;若两组数据的平均数相等,则它们的标准差也相等;直线xy10与圆x2y2相切其中真命题的序号是()ABCD12(2014·长春市调研测试)对于非空实数集A,记A*y|xA,yx设非空实数集合M、P满足:MP,且若x1,则xP.现给出以下命题:对于任意给定符合题设条件的集合M、P,必有P*M*;对于任意给定符合题设条件的集合M、P,必有M*P;对于任意给定符合题设条件的集合M、P,必有MP*;对于任意给定符合题设条件的集合M、P,必存在常数a,使得对任意的bM*,恒有abP*,其中正确的命题是()ABCD13(2014·武汉市调研测试)在等差数列an中,若a10,s,t是互不相等的正整数,则有等式(s1)at(t1)as0成立类比上述性质,相应地,在等比数列bn中,若b11,s,t是互不相等的正整数,则有等式_成立14观察下列等式:(11)2×1,(21)(22)22×1×3,(31)(32)(33)23×1×3×5,照此规律,第n个等式可为_15设函数f(x)(x0),观察:f1(x)f(x),f2(x)f(f1(x),f3(x)f(f2(x),f4(x)f(f3(x),根据以上事实,由归纳推理可得:当nN*且n2时,fn(x)f(fn1(x)_16(2014·武汉市武昌区高三年级联考)十进制的四位自然数的反序数是指千位与个位位置对调,百位与十位位置对调的数,例如4 852的反序数就是2 584.1955年,卡普耶卡研究了对四位自然数的一种变换:任给出四位数a0,用a0的四个数字由大到小重新排列成一个四位数m,再减去它的反序数n得出数a1mn,然后继续对a1重复上述变换,得数a2,如此进行下去,卡普耶卡发现,无论a0是多大的四位数,只要四个数字不全相同,最多进行k次上述变换,就会出现变换前后相同的四位数t.请你研究两个十进制四位数5 298和4 852,可得k_,四位数t_小题精练(二十一)1解析:选C.观察规律,归纳推理从给出的式子特点观察可推知,等式右端的值,从第三项开始,后一个式子的右端值等于它前面两个式子右端值的和,照此规律,则a10b10123.2解析:选B.anSnSn1n2an(n1)2an1,(n1)2an1(n1)(n1)an.anan1.由a11知:a2,a3.猜想an,故选B.3解析:选C.根据正方体的正视图的形状求解当正方体的俯视图是面积为1的正方形时,其正视图的最小面积为1,最大面积为.因为1,因此所给选项中其正视图的面积不可能为,故选C.4解析:选A.由(n1)*1n*11,得n*1(n1)*11(n2)*121*1(n1)又1*11,n*1n.5解析:选D.a2,a3,猜想:an.6解析:选B.553 125,5615 625,5778 125,58390 625,591 953 125,可得59与55的后四位数字相同,由此可归纳出5m4k与5m(kN*,m5,6,7,8)的后四位数字相同,又2 0144×5026,所以52 014与56后四位数字相同为5 625,故选B.7解析:选D.令x1x2m,且1x12,1x22,则x2x1x22x2,即x2m2x2,可得m2,故C2.8解析:选A.通过将数列的前10项分组得到第一组有一个数,分子分母之和为2;第二组有两个数,分子分母之和为3;第三组有三个数,分子分母之和为4;第四组有四个数,依次类推,a99,a100分别是第十四组的第8个数与第9个数,分子分母之和为15,所以a99,a100,故选A.9解析:选C.由题意,当x0时,将f(x)log3x的图象关于原点对称后可知g(x)log3(x)(x0)的图象与x0时,f(x)x24x存在两个交点,故“友好点对”的数量为2,故选C.10解析:选D.由三角形数表的排列规律知,aij2 011,则i必为奇数设i2m1.在第i行上面,必有m行为奇数行,m行为偶数行在前2m行中,共有奇数m2个最大的奇数为1(m21)×22m21,由2m212 013得m的最大值为31.i63.最大的奇数为1 921,在第63行中,首项为1 923,即1 923(j1)×22 013,j46,故ij109.11解析:选C.对各个命题逐一进行判断,得出结论对于命题,设球的半径为R,则···R3,故体积缩小到原来的,命题正确;对于命题,若两组数据的平均数相同,则它们的标准差不一定相同,例如数据:1,3,5和3,3,3的平均数相同,但标准差不同,命题不正确;对于命题,圆x2y2的圆心(0,0)到直线xy10的距离d,等于圆的半径,所以直线与圆相切,命题正确12解析:选C.对于,假设MP,则M*,则M*P,因此错误;对于,假设MP,则M,又P*,则MP*,因此也错误,而和都是正确的,故选C.13解析:通过类比,等比数列的商对等差数列的差,故等式应是1.答案:114解析:从给出的规律可看出,左边的连乘式中,连乘式个数以及每个连乘式中的第一个加数与右边连乘式中第一个乘数的指数保持一致,其中左边连乘式中第二个加数从1开始,逐项加1递增,右边连乘式中第二个乘数开始,组成以1为首项,2为公差的等差数列,项数与第几个等式保持一致,则照此规律,第n个等式可为(n1)(n2) (nn)2n×1×3××(2n1)答案:(n1)(n2) (nn)2n×1×3××(2n1)15解析:由于f1(x),f2(x),f3(x),f4(x),还可求得f5(x),由以上结果可以发现:当nN*时,fn(x)的表达式都是分式的形式,分子上都是x,分母上都是x的一次式,其中常数项依次为2,4,8,16,32,可知其规律是2n的形式,而x的一次项的系数比常数项都小1,因此可得fn(x)(nN*且n2)答案:16解析:a05 298,a19 8522 5897 263,a27 6322 3675 265,a36 5522 5563 996,a49 9633 6996 264,a56 6422 4664 176,a67 6411 4676 174,a77 6411 4676 174,k6,t6 174.同理,可得k7,t6 174.故k7,t6 174.答案:761746