2010年高考数学解答题分类汇编——创新试题doc--高中数学 .doc
-
资源ID:43234771
资源大小:373.50KB
全文页数:7页
- 资源格式: DOC
下载积分:10金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2010年高考数学解答题分类汇编——创新试题doc--高中数学 .doc
永久免费组卷搜题网第十五章 新增内容和创新题目五、创新题目(三)解答题(共6题)1.(北京卷理20)已知集合对于,定义A与B的差为A与B之间的距离为()证明:,且;()证明:三个数中至少有一个是偶数() 设P,P中有m(m2)个元素,记P中所有两元素间距离的平均值为(P). 证明:(P).证明:(I)设, 因为,所以, 从而 又由题意知,.当时,; 当时,所以(II)设, ,. 记,由(I)可知 所以中1的个数为,的1的个数为。 设是使成立的的个数,则 由此可知,三个数不可能都是奇数, 即,三个数中至少有一个是偶数。(III),其中表示中所有两个元素间距离的总和,设种所有元素的第个位置的数字中共有个1,个0则=由于所以从而2. (北京卷文20)已知集合对于,定义A与B的差为A与B之间的距离为()当n=5时,设,求,;()证明:,且;() 证明:三个数中至少有一个是偶数()解:=(1,0,1,0,1)设是使成立的的个数。则3.(广东卷理21)设A(),B()是平面直角坐标系xOy上的两点,先定义由点A到点B的一种折线距离(A,B)为(A,B)=+.对于平面上给定的不同的两点A(),B()若点C(x, y)是平面上的点,试证明+;在平面上是否存在点C(x, y),同时满足+= ; = ;若存在,请求所给出所有符合条件的点;若不存在,请予以证明。解析:设A(),B()是平面直角坐标系xOy上的两点,先定义由点A到点B的一种折线距离p(A,B)为.当且仅当时等号成立,即三点共线时等号成立.(2)当点C(x, y) 同时满足P+P= P,P= P时,点是线段的中点. ,即存在点满足条件。4.(江苏卷23)已知ABC的三边长为有理数(1)求证cosA是有理数(2)对任意正整数n,求证cosnA也是有理数解析 本题主要考查余弦定理、数学归纳法等基础知识,考查推理论证的能力与分析问题、解决问题的能力。满分10分。(方法一)(1)证明:设三边长分别为,是有理数,是有理数,分母为正有理数,又有理数集对于除法的具有封闭性,必为有理数,cosA是有理数。(2)当时,显然cosA是有理数;当时,因为cosA是有理数, 也是有理数;假设当时,结论成立,即coskA、均是有理数。当时,解得:cosA,均是有理数,是有理数,是有理数。 即当时,结论成立。综上所述,对于任意正整数n,cosnA是有理数。(方法二)证明:(1)由AB、BC、AC为有理数及余弦定理知是有理数。(2)用数学归纳法证明cosnA和都是有理数。当时,由(1)知是有理数,从而有也是有理数。假设当时,和都是有理数。当时,由,及和归纳假设,知和都是有理数。即当时,结论成立。综合、可知,对任意正整数n,cosnA是有理数。5.(上海卷理22)若实数、满足,则称比远离.(1)若比1远离0,求的取值范围;(2)对任意两个不相等的正数、,证明:比远离;(3)已知函数的定义域.任取,等于和中远离0的那个值.写出函数的解析式,并指出它的基本性质(结论不要求证明).解析:(1) ;(2) 对任意两个不相等的正数a、b,有,因为,所以,即a3+b3比a2b+ab2远离;(3) ,性质:1°f(x)是偶函数,图像关于y轴对称,2°f(x)是周期函数,最小正周期,3°函数f(x)在区间单调递增,在区间单调递减,kÎZ,4°函数f(x)的值域为6.(上海卷文22)若实数、满足,则称比接近.(1)若比3接近0,求的取值范围;(2)对任意两个不相等的正数、,证明:比接近;(3)已知函数的定义域.任取,等于和中接近0的那个值.写出函数的解析式,并指出它的奇偶性、最小正周期、最小值和单调性(结论不要求证明).解析:(1) xÎ(-2,2);(2) 对任意两个不相等的正数a、b,有,因为,所以,即a2b+ab2比a3+b3接近;(3) ,kÎZ,f(x)是偶函数,f(x)是周期函数,最小正周期T=p,函数f(x)的最小值为0,函数f(x)在区间单调递增,在区间单调递减,kÎZ 永久免费组卷搜题网