欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    基于单片机的温度控制毕业设计论文.doc

    • 资源ID:43237004       资源大小:1.01MB        全文页数:56页
    • 资源格式: DOC        下载积分:12金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要12金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    基于单片机的温度控制毕业设计论文.doc

    基于单片机的温度控制毕业设计论文目 录摘要IABSTRACTII第1章引言11.1 温度控制系统设计的背景、发展历史与意义1第2章总体设计方案32.1 方案一32.2 方案二3第3章单片机STC89S52的结构与原理43.1STC89C52简介43.2 STC89SC52的引脚说明5第4章温度控制的硬件设备114.1 温度传感器的选择114.1.1 DS18B20的性能特点114.1.2 DS18B20的部结构114.1.3 DS18B20部结构主要组成部分124.2 DS18B20的工作原理144.2.1 DS18B20的工作时序.144.2.2 DS18B20的测温原理164.2.3 DS18B20的测温流程17第5章系统的硬件设计185.1 温度采集电路185.2 数码管的温度显示电路185.2.1 数码管的分类185.2.2数码管的驱动方式185.2.3 本设计的数码管驱动195.3 温度控制电路205.4 晶振电路215.5 复位电路22第6章系统软件设计236.1 系统软件设计整体思路236.2 系统程序的流程图23第7章电路仿真与分析297.1 仿真软件297.2 调试29致谢31参考文献32附录一 外文翻译27附录二部分源程序代码41附录三 总体电路图5154 / 56第1章 引 言1.1 温度控制系统设计的背景、发展历史与意义随着社会的发展,科技的进步,以与测温仪器在各个领域的应用,智能化已是现代温度控制系统发展的主流方向。特别是近年来,温度控制系统已应用到人们生活的各个方面,但温度控制一直是一个未开发的领域,却又是与人们息息相关的一个实际问题。针对这种实际情况,设计一个温度控制系统,具有广泛的应用前景与实际意义。温度是科学技术中最基本的物理量之一,物理、化学、生物等学科都离不开温度。在工业生产和实验研究中,像电力、化工、石油、冶金、航空航天、机械制造、粮食存储、酒类生产等领域,温度常常是表征对象和过程状态的最重要的参数之一。比如,发电厂锅炉的温度必须控制在一定的围之;许多化学反应的工艺过程必须在适当的温度下才能正常进行;炼油过程中,原油必须在不同的温度和压力条件下进行分馏才能得到汽油、柴油、煤油等产品。没有适宜的温度环境,许多电子设备就不能正常工作,粮仓的储粮就会变质霉烂,酒类的品质就没有保障。因此,各行各业对温度控制的要求都越来越高。可见,温度的测量和控制是非常重要的。单片机在电子产品中的应用已经越来越广泛,在很多的电子产品中也用到了温度检测和温度控制。随着温度控制器应用围的日益广泛和多样,各种适用于不同场合的智能温度控制器应运而生。温度控制系统广泛应用于社会生活的各个领域 ,如家电、汽车、材料、电力电子等 ,常用的控制电路根据应用场合和所要求的性能指标有所不同 , 在工业企业中,如何提高温度控制对象的运行性能一直以来都是控制人员和现场技术人员努力解决的问题。这类控制对象惯性大,滞后现象严重,存在很多不确定的因素,难以建立精确的数学模型,从而导致控制系统性能不佳,甚至出现控制不稳定、失控现象。传统的继电器调温电路简单实用 ,但由于继电器动作频繁 ,可能会因触点不良而影响正常工作。控制领域还大量采用传统的PID控制方式,但PID控制对象的模型难以建立,并且当扰动因素不明确时,参数调整不便仍是普遍存在的问题。而采用数字温度传感器DS18B20,因其部集成了A/D转换器,使得电路结构更加简单,而且减少了温度测量转换时的精度损失,使得测量温度更加精确。数字温度传感器DS18B20只用一个引脚即可与单片机进行通信,大大减少了接线的麻烦,使得单片机更加具有扩展性。由于DS18B20芯片的小型化,更加可以通过单跳数据线就可以和主电路连接,故可以把数字温度传感器DS18B20做成探头,探入到狭小的地方,增加了实用性。更能串接多个数字温度传感器DS18B20进行围的温度检测。第2章 总体设计方案2.1 方案一测温电路的设计,可以使用热敏电阻之类的器件利用其感温效应,在将随被测温度变化的电压或电流采集过来,进行A/D转换后,就可以用单片机进行数据的处理,在显示电路上,就可以将被测温度显示出来,这种设计需要用到A/D转换电路,感温电路比较麻烦。2.2 方案二考虑使用温度传感器,结合单片机电路设计,温度传感器的选择,采用温度芯片DS18B20测量温度,该芯片的物理化学性能很稳定,它能用做工业测温元件,且此元件线性较好。在0-100摄氏度时,最大线性偏差小于1摄氏度。该芯片直接向单片机传输数字信号,便于单片机处理与控制。本制作的最大特点之一是直接采用温度芯片对为温度进行测量,使数据传输和处理简单化,直接读取被测温度值,之后进行转换,依次完成设计要求。比较以上两种方案,很容易看出,采用方案二,电路比较简单,软件设计容易实现,故实际设计中拟采用方案二。电路设计方框图如图2-1所示,它主要由四部分组成:控制部分主芯片采用单片机AT89S52显示部分采用四位一体共阳LED数码管以动态扫描方式实现温度显示;温度采集部分采用DS18B20温度传感器继电器控制大功率电器。复位电路晶振电路加热继电器工作DS18B20LED显示制冷继电器工作STCT89S52单片机 图21 温度控制系统的总体设计方案第3章 单片机STC89C52的结构与原理3.1 STC89C52简介STC89S52单片机是宏晶科技推出的新一代高速/低功耗/超强抗干扰的单片机,指令代码完全兼容传统8051单片机,12时钟/机器周期和6时钟/机器周期可以任意选择。主要特性如下:1. 增强型8051单片机,6时钟/机器周期和12时钟/机器周期可以任意选择,指令代码完全兼容传统8051.2. 工作电压:5.5V3.3V(5V单片机)/3.8V2.0V(3V单片机)3. 工作频率围:040MHz,相当于普通8051的080MHz,实际工作频率可达48MHz4. 用户应用程序空间为8K字节5. 片上集成512字节RAM6. 通用I/O口(32个),复位后为:P1/P2/P3/P4是准双向口/弱上拉,P0口是漏极开路输出,作为总线扩展用时,不用加上拉电阻,作为I/O口用时,需加上拉电阻。7. ISP(在系统可编程)/IAP(在应用可编程),无需专用编程器,无需专用仿真器,可通过串口(RxD/P3.0,TxD/P3.1)直接下载用户程序,数秒即可完成一片8. 具有EEPROM功能9. 具有看门狗功能10. 共3个16位定时器/计数器。即定时器T0、T1、T211. 外部中断4路,下降沿中断或低电平触发电路,Power Down模式可由外部中断低电平触发中断方式唤醒12. 通用异步串行口(UART),还可用定时器软件实现多个UART13. 工作温度围:-40+85(工业级)/075(商业级)14. PDIP封装STC89C52RC单片机的工作模式l 掉电模式:典型功耗<0.1A,可由外部中断唤醒,中断返回后,继续执行原程序l 空闲模式:典型功耗2mAl 正常工作模式:典型功耗4Ma7mAl 掉电模式可由外部中断唤醒,适用于水表、气表等电池供电系统与便携设备3.2 STC89C52的引脚说明STC89C52的引脚图如图3-1:图31 STC89C52RC引脚图VCC(40引脚):电源电压VSS(20引脚):接地P0端口(P0.0P0.7,3932引脚):P0口是一个漏极开路的8位双向I/O口。作为输出端口,每个引脚能驱动8个TTL负载,对端口P0写入“1”时,可以作为高阻抗输入。在访问外部程序和数据存储器时,P0口也可以提供低8位地址和8位数据的复用总线。此时,P0口部上拉电阻有效。在Flash ROM编程时,P0端口接收指令字节;而在校验程序时,则输出指令字节。验证时,要求外接上拉电阻。P1端口(P1.0P1.7,18引脚):P1口是一个带部上拉电阻的8位双向I/O口。P1的输出缓冲器可驱动(吸收或者输出电流方式)4个TTL输入。对端口写入1时,通过部的上拉电阻把端口拉到高电位,这是可用作输入口。P1口作输入口使用时,因为有部上拉电阻,那些被外部拉低的引脚会输出一个电流()。此外,P1.0和P1.1还可以作为定时器/计数器2的外部技术输入(P1.0/T2)和定时器/计数器2的触发输入(P1.1/T2EX),具体参见表3-1:在对Flash ROM编程和程序校验时,P1接收低8位地址。表3-1P1.0和P1.1引脚复用功能引脚号功能特性P1.0T2(定时器/计数器2外部计数输入),时钟输出P1.1T2EX(定时器/计数器2捕获/重装触发和方向控制)P2端口(P2.0P2.7,2128引脚):P2口是一个带部上拉电阻的8位双向I/O端口。P2的输出缓冲器可以驱动(吸收或输出电流方式)4个TTL输入。对端口写入1时,通过部的上拉电阻把端口拉到高电平,这时可用作输入口。P2作为输入口使用时,因为有部的上拉电阻,那些被外部信号拉低的引脚会输出一个电流()。在访问外部程序存储器和16位地址的外部数据存储器(如执行“MOVX DPTR”指令)时,P2送出高8位地址。在访问8位地址的外部数据存储器(如执行“MOVX R1”指令)时,P2口引脚上的容(就是专用寄存器(SFR)区中的P2寄存器的容),在整个访问期间不会改变。在对Flash ROM编程和程序校验期间,P2也接收高位地址和一些控制信号。P3端口(P3.0P3.7,1017引脚):P3是一个带部上拉电阻的8位双向I/O端口。P3的输出缓冲器可驱动(吸收或输出电流方式)4个TTL输入。对端口写入1时,通过部的上拉电阻把端口拉到高电位,这时可用作输入口。P3做输入口使用时,因为有部的上拉电阻,那些被外部信号拉低的引脚会输入一个电流()。在对Flash ROM编程或程序校验时,P3还接收一些控制信号。P3口除作为一般I/O口外,还有其他一些复用功能,如表3-2所示:表3-2 P3口引脚复用功能引脚号复用功能P3.0RXD(串行输入口)P3.1TXD(串行输出口)P3.2(外部中断0)P3.3(外部中断1)P3.4T0(定时器0的外部输入)P3.5T1(定时器1的外部输入)P3.6(外部数据存储器写选通)P3.7(外部数据存储器读选通)RST(9引脚):复位输入。当输入连续两个机器周期以上高电平时为有效,用来完成单片机单片机的复位初始化操作。看门狗计时完成后,RST引脚输出96个晶振周期的高电平。特殊寄存器AUXR(地址8EH)上的DISRTO位可以使此功能无效。DISRTO默认状态下,复位高电平有效。ALE/(30引脚):地址锁存控制信号(ALE)是访问外部程序存储器时,锁存低8位地址的输出脉冲。在Flash编程时,此引脚()也用作编程输入脉冲。在一般情况下,ALE以晶振六分之一的固定频率输出脉冲,可用来作为外部定时器或时钟使用。然而,特别强调,在每次访问外部数据存储器时,ALE脉冲将会跳过。如果需要,通过将地址位8EH的SFR的第0位置“1”,ALE操作将无效。这一位置“1”,ALE仅在执行MOVX或MOV指令时有效。否则,ALE将被微弱拉高。这个ALE使能标志位(地址位8EH的SFR的第0位)的设置对微控制器处于外部执行模式下无效。(29引脚):外部程序存储器选通信号()是外部程序存储器选通信号。当AT89C51RC从外部程序存储器执行外部代码时,在每个机器周期被激活两次,而访问外部数据存储器时,将不被激活。/VPP(31引脚):访问外部程序存储器控制信号。为使能从0000H到FFFFH的外部程序存储器读取指令,必须接GND。注意加密方式1时,将部锁定位RESET。为了执行部程序指令,应该接VCC。在Flash编程期间,也接收12伏VPP电压。XTAL1(19引脚):振荡器反相放大器和部时钟发生电路的输入端。XTAL2(18引脚):振荡器反相放大器的输入端。特殊功能寄存器在STC89C52片存储器中,80HFFH共128个单元位特殊功能寄存器(SFR),SFR的地址空间如下表3-3所示。并非所有的地址都被定义,从80HFFH共128个字节只有一部分被定义。还有相当一部分没有定义。对没有定义的单元读写将是无效的,读出的数值将不确定,而写入的数据也将丢失。不应将“1”写入未定义的单元,由于这些单元在将来的产品中可能赋予新的功能,在这种情况下,复位后这些单元数值总是“0”。STC89C52RC除了有定时器/计数器0和定时器/计数器1之外,还增加了一个一个定时器/计数器2.定时器/计数器2的控制和状态位位于T2CON(见表3-4)和T2MOD(见表3-7)。定时器2是一个16位定时/计数器。通过设置特殊功能寄存器T2CON中的C/T2位,可将其作为定时器或计数器(特殊功能寄存器T2CON的描述如表3-5所列)。定时器2有3种操作模式:捕获、自动重新装载(递增或递减计数)和波特率发生器,这3种模式由T2CON中的位进行选择(如表3-6所列)表3-3STC89C52RC的特殊功能寄存器表3-4特殊功能寄存器T2CON的描述 表3-5 T2CON控制寄存器各位功能说明符号功能TF2定时器2溢出标志。定时器2溢出时,又由硬件置位,必须由软件请0.当RCLK=1或TCLK=1时,定时器2溢出,不对TF2置位。EXF2定时器2外部标志。当EXEN2=1,且当T2EX引脚上出现负跳变而出现捕获或重装载时,EXF2置位,申请中断。此时如果允许定时器2中断,CPU将响应中断,执行定时器2 中断服务程序,EXF2必须由软件清除。当定时器2工作在向上或向下计数方式时(DCEN=1),EXF2不能激活中断。RCLK接收时钟允许。RCLK=1时,用定时器2溢出脉冲作为串口(工作于工作方式1或3时)的接收时钟,RCLK=0,用定时器1的溢出脉冲作为接收脉冲TCLK发送时钟允许。TCLK=1时,用定时器2溢出脉冲作为串口(工作于工作方式1或3时)的发送时钟,TCLK=0,用定时器1的溢出脉冲作为发送脉冲EXEN2定时器2外部允许标志。当EXEN2=1时,如果定时器2未用于作串行口的波特率发生器,在T2EX端口出现负跳变脉冲时,激活定时器2捕获或者重装载。EXEN2=0时,T2EX端的外部信号无效。TR2定时器2启动/停止控制位。TR2=1时,启动定时器2.C/定时器2定时方式或计数方式控制位。C/=0时,选择定时方式,C/=1时,选择对外部事件技术方式(下降沿触发)。CP/捕获/重装载选择。CP/=1时,如EXEN2=1,且T2EX端出现负跳变脉冲时发生捕获操作。CP/=1时,若定时器2溢出或EXEN2=1条件下,T2EX端出现负跳变脉冲,都会出现自动重装载操作。当RCLK=1或TCLK=1时,该位无效,在定时器2溢出时强制其自动重装载。表3-6 T2CON工作方式RCLK+TCLKCP/TR2模式00116位自动重装01116位捕获1X1波特率发生器XX0(关闭)表3-7 定时器2模式(T2MOD)控制寄存器的描述符号功能-不可用,保留将来之用*T2OE定时器2输出使能位DCEN向下计数使能位。定时器2可配置成向上/向下计数器第4章 温度控制的硬件设备4.1 温度传感器的选择DS18B20温度传感器是美国DALLAS半导体公司最新推出的一种改进型智能温度传感器,与传统的热敏电阻等测温元件相比,它能直接读出被测温。这一部分主要完成对温度信号的采集和转换工作,由DS18B20数字温度传感器与其与单片机的接口部分组成。数字温度传感器DS18B20把采集到的温度通过数据引脚传到单片机的P3.5口,单片机承受温度并存储。此部分只用到DS18B20和单片机,硬件很简单。4.1.1 DS18B20的性能特点1) 独特的单线接口仅需要一个端口引脚进行通信;2) 多个DS18B20可以并联在惟一的三线上,实现多点组网功能;3) 无须外部器件;4) 可通过数据线供电,电压围为3.05.5V;5) 零待机功耗;6) 温度以3位数字显示;7) 用户可定义报警设置;8) 报警搜索命令识别并标志超过程序限定温度(温度报警条件)的器件;9) 负电压特性,电源极性接反时,温度计不会因发热而烧毁,但不能正常工作。 4.1.2 DS18B20的部结构DS18B20采用3脚PR35封装,如图4-1所示:图4-1 DS18B20封装DS18B20的部结构,如图4-2所示: 图4-2 DS18B20部结构4.1.3 DS18B20部结构主要组成部分1) 64位光刻ROM。开始8位是产品类型的编号,接着是每个器件的惟一的序号,共有48位,最后8位是前56位的CRC校验码,这也是多个DS18B20可以采用一线进行通信的原因。64位闪速ROM的结构如下.表4-3 ROM结构8b检验CRC48b序列号8b工厂代码(10H)2) 非挥发的温度报警触发器TH和TL,可通过软件写入用户报警上下限值。3)高速暂存存储,可以设置DS18B20温度转换的精度。DS18B20温度传感器的部存储器还包括一个高速暂存RAM和一个非易失性的可电擦除的E2PRAM。高速暂存RAM的结构为8字节的存储器,结构如表4-4所示。头2个字节包含测得的温度信息,第3和第4字节TH和TL的拷贝,是易失的,每次上电复位时被刷新。第5个字节,为配置寄存器,它的容用于确定温度值的数字转换分辨率。DS18B20工作时寄存器中的分辨率转换为相应精度的温度数值。它的部存储器结构和字节定义如图表4-5所示。低5位一直为1,TM是工作模式位,用于设置DS18B20在工作模式还是在测试模式。 表4-4 DS18B20部存储器结构Byte0温度测量值LSB(50H)Byte1温度测量值MSB(50H)E2PROMByte2TH高温寄存器ß-àTH高温寄存器Byte3TL低温寄存器ß-àTL 低温寄存器Byte4配位寄存器ß-à配位寄存器Byte5预留(FFH)Byte6预留(0CH)Byte7预留(IOH)Byte8循环冗余码校验(CRC)表4-5 DS18B20字节定义TM R1R01 1 1 1 1由表4-6可见,分辨率越高,所需要的温度数据转换时间越长。因此,在实际应用中要将分辨率和转换时间权衡考虑。高速暂存RAM的第6、7、8字节保留未用,表现为全逻辑1。第9字节读出前面所有8字节的CRC码,可用来检验数据,从而保证通信数据的正确性。当DS18B20接收到温度转换命令后,开始启动转换。转换完成后的温度值就以16位带符号扩展的二进制补码形式存储在高速暂存存储器的第1、2字节。单片机可以通过单线接口读出该数据,读数据时低位在先,高位在后,数据格式以0.0625LSB形式表示。当符号位S0时,表示测得的温度值为正值,可以直接将二进制位转换为十进制;当符号位S1时,表示测得的温度值为负值,要先将补码变成原码,再计算十进制数值。 表4-7是一部分温度值对应的二进制温度数据 。表4-6 DS18B20温度转换时间表R1R0分辨率/位温度最大转向时间/ms00993.750110187.510113751112750表4-7一部分温度对应值表温度/二进制表示十六进制表示+1250000 0111 1101 000007D0H+850000 0101 0101 00000550H+25.06250000 0001 1001 00000191H+10.1250000 0000 1010 000100A2H+0.50000 0000 0000 00100008H00000 0000 0000 10000000H-0.51111 1111 1111 0000FFF8H续表4-7-10.1251111 1111 0101 1110FF5EH-25.06251111 1110 0110 1111FE6FH-551111 1100 1001 0000FC90H4) CRC的产生在64 b ROM的最高有效字节中存储有循环冗余校验码(CRC)。主机根据ROM的前56位来计算CRC值,并和存入DS18B20中的CRC值做比较,以判断主机收到的ROM数据是否正确。另外,由于DS18B20单线通信功能是分时完成的,它有严格的时隙概念,因此读写时序很重要。系统对DS18B20的各种操作按协议进行。操作协议为:初使化DS18B20(发复位脉冲)发ROM功能命令发存储器操作命令处理数据。4.2 DS18B20的工作原理4.2.1 DS18B20工作时序根据DS18B20的通讯协议,主机控制DS18B20完成温度转换必须经过三个步骤: 1. 每一次读写之前都必须要对DS18B20进行复位; 2. 复位成功后发送一条ROM指令; 3. 最后发送RAM指令,这样才能对DS18B20进行预定的操作。复位要求主CPU将数据线下拉500微秒,然后释放,DS18B20收到信号后等待1560微秒左右后发出60240微秒的存在低脉冲,主CPU收到此信号表示复位成功。其工作时序包括初始化时序、写时序和读时序,具体工作方法如图4-3,4-4,4-5所示。1) 初始化时序 图4-3 初始化时序图 总线上的所有传输过程都是以初始化开始的,主机响应应答脉冲。应答脉冲使主机知道,总线上有从机设备,且准备就绪。主机输出低电平,保持低电平时间至少480us,以产生复位脉冲。接着主机释放总线,4.7K上拉电阻将总线拉高,延时1560us,并进入承受模式,以产生低电平应答脉冲,若为低电平,再延时480us。2) 写时序图44 写时序写时序包括写0时序和写1时序。所有写时序至少需要60us,且在2次独立的写时序之间至少需要1us的恢复时间,都是以总线拉低开始。写1时序,主机输出低电平,延时2us,然后释放总线,延时60us。写0时序,主机输出低电平,延时60us,然后释放总线,延时2us。3) 读时序图45 读时序 总线器件仅在主机发出读时序是,才向主机传输数据,所以,在主机发出读数据命令后,必须马上产生读时序,以便从机能够传输数据。所有读时序至少需要60us,且在2次独立的读时序之间至少需要1us的恢复时间。每个读时序都由主机发起,至少拉低总线1us。主机在读时序期间必须释放总线,并且在时序起始后的15us之采样总线状态。主机输出低电平延时2us,然后主机转入输入模式延时12us,然后读取总线当前电平,然后延时50us。4.2.2 DS18B20的测温原理每一片DSl8B20在其ROM中都存有其唯一的48位序列号,在出厂前已写入片ROM 中。主机在进入操作程序前必须用读ROM(33H)命令将该DSl8B20的序列号读出。程序可以先跳过ROM,启动所有DSl8B20进行温度变换,之后通过匹配ROM,再逐一地读回每个DSl8B20的温度数据。DS18B20的测温原理如图4-9所示,图中低温度系数晶振的振荡频率受温度的影响很小,用于产生固定频率的脉冲信号送给减法计数器1,高温度系数晶振随温度变化其震荡频率明显改变,所产生的信号作为减法计数器2的脉冲输入,图中还隐含着计数门,当计数门打开时,DS18B20就对低温度系数振荡器产生的时钟脉冲后进行计数,进而完成温度测量。计数门的开启时间由高温度系数振荡器来决定,每次测量前,首先将-55 所对应的基数分别置入减法计数器1和温度寄存器中,减法计数器1和温度寄存器被预置在-55 所对应的一个基数值。减法计数器1对低温度系数晶振产生的脉冲信号进行减法计数,当减法计数器1的预置值减到0时温度寄存器的值将加1,减法计数器1的预置将重新被装入,减法计数器1重新开始对低温度系数晶振产生的脉冲信号进行计数,如此循环直到减法计数器2计数到0时,停止温度寄存器值的累加,此时温度寄存器中的数值即为所测温度。图4-9中的斜率累加器用于补偿和修正测温过程中的非线性,其输出用于修正减法计数器的预置值,只要计数门仍未关闭就重复上述过程,直至温度寄存器值达到被测温度值。 表4-8 ROM操作命令指令约定代码功 能读ROM 33H读DS18B20 ROM中的编码符合ROM 55H发出此命令之后,接着发出64位ROM编码,访问单线总线上与该编码相对应的DS18B20 使之作出响应,为下一步对该DS18B20的读写作准备搜索ROM0F0H用于确定挂接在同一总线上DS18B20的个数和识别64位ROM地址,为操作各器件作好准备跳过ROM0CCH忽略64位ROM地址,直接向DS18B20发温度变换命令,适用于单片工作续表48告警搜索命令0ECH执行后,只有温度超过设定值上限或者下限的片子才做出响应温度变换44H启动DS18B20进行温度转换,转换时间最长为500MS,结果存入部9字节RAM中读暂器0BEH读部RAM中9字节的容写暂存器4EH发出向部RAM的第3,4字节写上、下限温度数据命令,紧跟读命令之后,是传送两字节的数据复制暂存器48H将E2PRAM中第3,4字节容复制到E2PRAM中重调E2PRAM0BBH将E2PRAM中容恢复到RAM中的第3,4字节读 供 电方 式0B4H读DS18B20的供电模式,寄生供电时DS18B20发送“0”,外接电源供电DS18B20发送“1”另外,由于DS18B20单线通信功能是分时完成的,他有严格的时隙概念,因此读写时序很重要。系统对DS18B20的各种操作必须按协议进行。操作协议为:初始化DS18B20(发复位脉冲)发ROM功能命令发存储器操作命令处理数据。减法计数器斜坡累加器减到0减法计数器预 置低温度系数振 荡 器高温度系数振 荡 器计数比较器预 置温度寄存器减到0图4-6 测温原理部装置4.2.3 DS18B20的测温流程DS18B20的测温流程如图4-7所示初始化DS18B20跳过ROM匹配温度变换延时1S跳过ROM匹配读暂存器转换成显示码数码管显示 图4-7 DS18B20的测温流程第5章 系统的硬件设计5.1 温度采集电路数据采集电路如图5-1所示,由温度传感器DS18B20采集被控制对象的实时温度,提供给AT89S52的P3.5口作为数据输入。在本次设计中我们所控的对象为所处室温,当然作为改进我们可以把传感器与电路板分离,由数据线相连进行通讯,便于测量多种对象。图5-1 单片机与DS18B20的连接5.2 数码管的温度显示电路5.2.1 数码管的分类数码管是一种半导体发光器件,其基本单元是发光二极管。数码管按段数分为七段数码管和八段数码管,八段数码管比七段数码管多一个发光二极管单元(多一个小数点显示);按能显示多少个“8”可分为1位,2位等数码管;按发光二极管单元连接方式分为共阳和共阴数码管。共阳数码管是指将所有发光二极管的阳极接到一起形成公共阳极(COM)的数码管。共阳数码管在应用时应将公共极COM接到+5V,当某一字段发光二极管的阴极为低电平时,相应字段就点亮。当某一字段为的阳极为高电平时,相应字段就不亮。共阴数码管是将所有发光数码管的阴极接到一起形成公共阴极的数码管。共阴数码管在应用时将公共极COM接到低地线GND上,当某一字段发光二极管的阳极为高电平时,相应字段就点亮,当某一字段的阳极为低电平时,相应字段就不亮。5.2.2 数码管的驱动方式1)静态显示驱动:静态驱动也成直流驱动,静态驱动是指每个数码管的每一个段码都由一个片机的I/O端口进行驱动,或使用BCD码二-十进制译码器译码进行驱动。静态驱动的优点是编程简单,显示亮度高,缺点是占用I/O口端口多,如驱动5个数码管静态显示则需要40根I/O口驱动,可用的只有32个,实际应用必须增加译码驱动器进行驱动,增加了硬件电路的复杂性。2)动态显示驱动:数码管动态显示接口是单片机应用最为广泛的他一种显示方式之一,动态显示是将所有的数码管的8个显示笔画“a,b,c,d,e,f,g,dp”的同名端连接在一起,另外为每个数码管的公共极增加位选通控制电路,位选通由各自独立的I/O线控制,当单片机的输出字形码时,所有数码管都承受相同的字形码,但究竟是哪个会显示出字形,取决于单片机对位选通COM端电路的控制,通过分时轮流控制各个数码管的COM端的控制,实现轮流显示,在这个过程中,每个数码管的点亮时间位1-2ms,由于人的数据额暂留现象与发光二极管的余辉效应,尽管实际各位数码管并非同时点亮,但扫描速度够快,给人的印象就是一组稳定的显示数据,不会有闪烁感,效果与静态显示一样,能够节省大量的I/O口,而且功耗低。5.2.3 本设计的数码显示本设计的显示采用的是动态显示。连接方法是将每个二极管的同名端连在一起,而每个显示器的公共极COM各自独立的承受I/O线控制,CPU向字段输出端口输出字型码,所有显示器承受到相同的字符,而要使用哪个显示器要取决于他们的COM的电平,而这段是由I/O端控制的,由单片机输出。数码管与单片机之间用电阻连接,位选端通过三极管与I/O连接,如以下图5-2所示。图5-3数码管的显示电路5.3 温度控制电路温度分为高低温控制。设计所达到的效果是,我们的单片机设置一个固定的温度围,当温度传感器测量的温度高于我们设定的最高数值时,这时单片机指令控制端口产生一个低电平信号送给固态继电器,使继电器的产开开关闭合,使开关打开通电,控制一个降温装置的开启(本设计考虑到成本和技术问题,采用电风扇进行降温控制)。相反,当温度传感器测量的温度低于设置的最低温度围时,这时要与最低温度作比较,低于5度以的,单片机控制的P1.0端口产生低电平送给继电器,从而控制加热装置进行加热(本设计采用点灯泡加热),低于5-10度时,单片机的P1.0和P1.1变低电平,控制两个电灯泡加热,低于10度以上,同上开启三台加热装置加热。控制电路的原理图如5-4所示,继电器接三极管的集电极,之所以采用三极管,就是继电器一般是需要驱动电压的,而单片机的管脚不能直接提供很高的电压,这样就会导致即使单片机送出了低电平也无法将继电器的开关打开,当接上三极管后就能将输入信号的发送到继电器当中,驱动开关使温度调节器改变温度。但考虑到实际情况:当线圈得电,这时继电器开关闭合,电路就处于工作状态。当线圈失电,开关断开电路不工作。但这时出现一个问题,线圈可以储存能量的(线圈会阻止电流的突变,也就是电磁感应作用,即电流只能慢慢增大和减少),如果这时一下使线圈断电,它两端就会产生很大的电压,这样就可能使线圈损坏,使相连接的元器件击穿。这时,我们要在线圈两端接上二极管,便可以使它产生一个回路(断电时相当于在线圈两端接根短路线),使线圈储存的能量放完。这个二极管在这里起到续流的作用,我们通常称它为续流二极管。(附:电容两端的电压不能突变,电感两端的电流不能突变)图5-4 继电器的控制电路5.4 晶振电路在MCS-51系列单片机部有一个时钟电路,其核心是一个高增益单极反相放大器,将晶体振荡器提供的振荡信号放大。XTAL1引脚和XTAL2引脚就分别是此放大器的输入端和输出端。单片机部虽然有这个时钟电路,但要形成时钟,必须外接附加电路。用不用这个部放大器,就形成了单片机时钟产生的不同方式:若采用这个放大器,即为部方式;若采用外部放大器,即为外部方式。本系统采用部方式,振荡器在加电10ms开始起振,XTAL2输出3V左右的正弦波。晶振频率可以在1.212MHz之间任选,由于制造工艺的改进,有些单片机的振荡频率围正向两端延伸,可达到40MHz。振荡频率越高表示单片机的运行速度越快,但同时对存储器的速度和印刷电路板的要求也就越高。如果存储器的存储速度跟不上的话,再快的CPU也是没用。这个并联谐振电路对电容的值没有严格的要求,但电容的大小多少会影响振荡器的稳定性、振荡器频率的高低、起振的快速性等。所以一般外接晶体时,C1、C2的值通常选为20100pF,在6070pF时振荡器有较高的频率稳定性。本系统选用石英晶体振荡器,晶振频率为12MHz,C1、C2的值为30PF,在设计电路板时,晶振、电容等均应尽可能靠近芯片,以减小分布电容,进一步保证振荡器的稳定性。图5-5 晶振电路 5.5 复位电路 图5-6 复位电路单片机复位电路要求有一个持续时间,加上电容可以利用其两端电压不能突变的特性,使复位电平维持一定时间,使单片机复位。单片机一般有两种复位方式:上电复位,在系统一上电时利用电容两端电压不能突变的原理给系统一个短时的高电平;按键复位,通过按键接通高电平给系统复位。本设计中采用的是上电复位和按键复位同时有效。第6章 系统软件设计6.1 系统软件设计整体思路应用系统要完成各项功能,首先必须有较完善的硬件作保证。同时还必须得到相应设计合理的软件的支持,尤其是微机应用高速发展的今天,许多由硬件完成的工作,都可通过软件编

    注意事项

    本文(基于单片机的温度控制毕业设计论文.doc)为本站会员(知****量)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开